Cargando…
An Improved Adaptive IVMD-WPT-Based Noise Reduction Algorithm on GPS Height Time Series
To improve the reliability of Global Positioning System (GPS) signal extraction, the traditional variational mode decomposition (VMD) method cannot determine the number of intrinsic modal functions or the value of the penalty factor in the process of noise reduction, which leads to inadequate or ove...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8709023/ https://www.ncbi.nlm.nih.gov/pubmed/34960391 http://dx.doi.org/10.3390/s21248295 |
_version_ | 1784622831589392384 |
---|---|
author | Xu, Huaqing Lu, Tieding Montillet, Jean-Philippe He, Xiaoxing |
author_facet | Xu, Huaqing Lu, Tieding Montillet, Jean-Philippe He, Xiaoxing |
author_sort | Xu, Huaqing |
collection | PubMed |
description | To improve the reliability of Global Positioning System (GPS) signal extraction, the traditional variational mode decomposition (VMD) method cannot determine the number of intrinsic modal functions or the value of the penalty factor in the process of noise reduction, which leads to inadequate or over-decomposition in time series analysis and will cause problems. Therefore, in this paper, a new approach using improved variational mode decomposition and wavelet packet transform (IVMD-WPT) was proposed, which takes the energy entropy mutual information as the objective function and uses the grasshopper optimisation algorithm to optimise the objective function to adaptively determine the number of modal decompositions and the value of the penalty factor to verify the validity of the IVMD-WPT algorithm. We performed a test experiment with two groups of simulation time series and three indicators: root mean square error (RMSE), correlation coefficient (CC) and signal-to-noise ratio (SNR). These indicators were used to evaluate the noise reduction effect. The simulation results showed that IVMD-WPT was better than the traditional empirical mode decomposition and improved variational mode decomposition (IVMD) methods and that the RMSE decreased by 0.084 and 0.0715 mm; CC and SNR increased by 0.0005 and 0.0004 dB, and 862.28 and 6.17 dB, respectively. The simulation experiments verify the effectiveness of the proposed algorithm. Finally, we performed an analysis with 100 real GPS height time series from the Crustal Movement Observation Network of China (CMONOC). The results showed that the RMSE decreased by 11.4648 and 6.7322 mm, and CC and SNR increased by 0.1458 and 0.0588 dB, and 32.6773 and 26.3918 dB, respectively. In summary, the IVMD-WPT algorithm can adaptively determine the number of decomposition modal functions of VMD and the optimal combination of penalty factors; it helps to further extract effective information for noise and can perfectly retain useful information in the original time series. |
format | Online Article Text |
id | pubmed-8709023 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-87090232021-12-25 An Improved Adaptive IVMD-WPT-Based Noise Reduction Algorithm on GPS Height Time Series Xu, Huaqing Lu, Tieding Montillet, Jean-Philippe He, Xiaoxing Sensors (Basel) Article To improve the reliability of Global Positioning System (GPS) signal extraction, the traditional variational mode decomposition (VMD) method cannot determine the number of intrinsic modal functions or the value of the penalty factor in the process of noise reduction, which leads to inadequate or over-decomposition in time series analysis and will cause problems. Therefore, in this paper, a new approach using improved variational mode decomposition and wavelet packet transform (IVMD-WPT) was proposed, which takes the energy entropy mutual information as the objective function and uses the grasshopper optimisation algorithm to optimise the objective function to adaptively determine the number of modal decompositions and the value of the penalty factor to verify the validity of the IVMD-WPT algorithm. We performed a test experiment with two groups of simulation time series and three indicators: root mean square error (RMSE), correlation coefficient (CC) and signal-to-noise ratio (SNR). These indicators were used to evaluate the noise reduction effect. The simulation results showed that IVMD-WPT was better than the traditional empirical mode decomposition and improved variational mode decomposition (IVMD) methods and that the RMSE decreased by 0.084 and 0.0715 mm; CC and SNR increased by 0.0005 and 0.0004 dB, and 862.28 and 6.17 dB, respectively. The simulation experiments verify the effectiveness of the proposed algorithm. Finally, we performed an analysis with 100 real GPS height time series from the Crustal Movement Observation Network of China (CMONOC). The results showed that the RMSE decreased by 11.4648 and 6.7322 mm, and CC and SNR increased by 0.1458 and 0.0588 dB, and 32.6773 and 26.3918 dB, respectively. In summary, the IVMD-WPT algorithm can adaptively determine the number of decomposition modal functions of VMD and the optimal combination of penalty factors; it helps to further extract effective information for noise and can perfectly retain useful information in the original time series. MDPI 2021-12-11 /pmc/articles/PMC8709023/ /pubmed/34960391 http://dx.doi.org/10.3390/s21248295 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Xu, Huaqing Lu, Tieding Montillet, Jean-Philippe He, Xiaoxing An Improved Adaptive IVMD-WPT-Based Noise Reduction Algorithm on GPS Height Time Series |
title | An Improved Adaptive IVMD-WPT-Based Noise Reduction Algorithm on GPS Height Time Series |
title_full | An Improved Adaptive IVMD-WPT-Based Noise Reduction Algorithm on GPS Height Time Series |
title_fullStr | An Improved Adaptive IVMD-WPT-Based Noise Reduction Algorithm on GPS Height Time Series |
title_full_unstemmed | An Improved Adaptive IVMD-WPT-Based Noise Reduction Algorithm on GPS Height Time Series |
title_short | An Improved Adaptive IVMD-WPT-Based Noise Reduction Algorithm on GPS Height Time Series |
title_sort | improved adaptive ivmd-wpt-based noise reduction algorithm on gps height time series |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8709023/ https://www.ncbi.nlm.nih.gov/pubmed/34960391 http://dx.doi.org/10.3390/s21248295 |
work_keys_str_mv | AT xuhuaqing animprovedadaptiveivmdwptbasednoisereductionalgorithmongpsheighttimeseries AT lutieding animprovedadaptiveivmdwptbasednoisereductionalgorithmongpsheighttimeseries AT montilletjeanphilippe animprovedadaptiveivmdwptbasednoisereductionalgorithmongpsheighttimeseries AT hexiaoxing animprovedadaptiveivmdwptbasednoisereductionalgorithmongpsheighttimeseries AT xuhuaqing improvedadaptiveivmdwptbasednoisereductionalgorithmongpsheighttimeseries AT lutieding improvedadaptiveivmdwptbasednoisereductionalgorithmongpsheighttimeseries AT montilletjeanphilippe improvedadaptiveivmdwptbasednoisereductionalgorithmongpsheighttimeseries AT hexiaoxing improvedadaptiveivmdwptbasednoisereductionalgorithmongpsheighttimeseries |