Cargando…
Perfect Optical Absorbers by All-Dielectric Photonic Crystal/Metal Heterostructures Due to Optical Tamm State
In this study, we theoretically and experimentally investigated the perfect optical absorptance of a photonic heterostructure composed of a truncated all-dielectric photonic crystal (PC) and a thick metal film in the visible regions. The three simulated structures could achieve narrow-band perfect o...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8709068/ https://www.ncbi.nlm.nih.gov/pubmed/34947796 http://dx.doi.org/10.3390/nano11123447 |
_version_ | 1784622843059765248 |
---|---|
author | Lu, Guang Zhang, Kaiyuan Zhao, Yunpeng Zhang, Lei Shang, Ziqian Zhou, Haiyang Diao, Chao Zhou, Xiachen |
author_facet | Lu, Guang Zhang, Kaiyuan Zhao, Yunpeng Zhang, Lei Shang, Ziqian Zhou, Haiyang Diao, Chao Zhou, Xiachen |
author_sort | Lu, Guang |
collection | PubMed |
description | In this study, we theoretically and experimentally investigated the perfect optical absorptance of a photonic heterostructure composed of a truncated all-dielectric photonic crystal (PC) and a thick metal film in the visible regions. The three simulated structures could achieve narrow-band perfect optical absorption at wavelengths of 500 nm, 600 nm, and 700 nm, respectively. Based on the measured experimental results, the three experimental structures achieved over 90% absorption at wavelengths of 489 nm, 604 nm, and 675 nm, respectively. The experimental results agreed well with the theoretical values. According to electromagnetic field intensity distributions at the absorption wavelengths, the physical mechanism of perfect absorption was derived from the optical Tamm state (OTS). The structure was simple, and the absorption characteristics were not significantly affected by the thickness of the thick metal layer, which creates convenience in the preparation of the structure. In general, the proposed perfect absorbers have exciting prospects in solar energy, optical sensor technology, and other related fields. |
format | Online Article Text |
id | pubmed-8709068 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-87090682021-12-25 Perfect Optical Absorbers by All-Dielectric Photonic Crystal/Metal Heterostructures Due to Optical Tamm State Lu, Guang Zhang, Kaiyuan Zhao, Yunpeng Zhang, Lei Shang, Ziqian Zhou, Haiyang Diao, Chao Zhou, Xiachen Nanomaterials (Basel) Article In this study, we theoretically and experimentally investigated the perfect optical absorptance of a photonic heterostructure composed of a truncated all-dielectric photonic crystal (PC) and a thick metal film in the visible regions. The three simulated structures could achieve narrow-band perfect optical absorption at wavelengths of 500 nm, 600 nm, and 700 nm, respectively. Based on the measured experimental results, the three experimental structures achieved over 90% absorption at wavelengths of 489 nm, 604 nm, and 675 nm, respectively. The experimental results agreed well with the theoretical values. According to electromagnetic field intensity distributions at the absorption wavelengths, the physical mechanism of perfect absorption was derived from the optical Tamm state (OTS). The structure was simple, and the absorption characteristics were not significantly affected by the thickness of the thick metal layer, which creates convenience in the preparation of the structure. In general, the proposed perfect absorbers have exciting prospects in solar energy, optical sensor technology, and other related fields. MDPI 2021-12-20 /pmc/articles/PMC8709068/ /pubmed/34947796 http://dx.doi.org/10.3390/nano11123447 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Lu, Guang Zhang, Kaiyuan Zhao, Yunpeng Zhang, Lei Shang, Ziqian Zhou, Haiyang Diao, Chao Zhou, Xiachen Perfect Optical Absorbers by All-Dielectric Photonic Crystal/Metal Heterostructures Due to Optical Tamm State |
title | Perfect Optical Absorbers by All-Dielectric Photonic Crystal/Metal Heterostructures Due to Optical Tamm State |
title_full | Perfect Optical Absorbers by All-Dielectric Photonic Crystal/Metal Heterostructures Due to Optical Tamm State |
title_fullStr | Perfect Optical Absorbers by All-Dielectric Photonic Crystal/Metal Heterostructures Due to Optical Tamm State |
title_full_unstemmed | Perfect Optical Absorbers by All-Dielectric Photonic Crystal/Metal Heterostructures Due to Optical Tamm State |
title_short | Perfect Optical Absorbers by All-Dielectric Photonic Crystal/Metal Heterostructures Due to Optical Tamm State |
title_sort | perfect optical absorbers by all-dielectric photonic crystal/metal heterostructures due to optical tamm state |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8709068/ https://www.ncbi.nlm.nih.gov/pubmed/34947796 http://dx.doi.org/10.3390/nano11123447 |
work_keys_str_mv | AT luguang perfectopticalabsorbersbyalldielectricphotoniccrystalmetalheterostructuresduetoopticaltammstate AT zhangkaiyuan perfectopticalabsorbersbyalldielectricphotoniccrystalmetalheterostructuresduetoopticaltammstate AT zhaoyunpeng perfectopticalabsorbersbyalldielectricphotoniccrystalmetalheterostructuresduetoopticaltammstate AT zhanglei perfectopticalabsorbersbyalldielectricphotoniccrystalmetalheterostructuresduetoopticaltammstate AT shangziqian perfectopticalabsorbersbyalldielectricphotoniccrystalmetalheterostructuresduetoopticaltammstate AT zhouhaiyang perfectopticalabsorbersbyalldielectricphotoniccrystalmetalheterostructuresduetoopticaltammstate AT diaochao perfectopticalabsorbersbyalldielectricphotoniccrystalmetalheterostructuresduetoopticaltammstate AT zhouxiachen perfectopticalabsorbersbyalldielectricphotoniccrystalmetalheterostructuresduetoopticaltammstate |