Cargando…
Transverse Vibration of Viscoelastic Sandwich Structures: Finite Element Modeling and Experimental Study
In the present work, the nonlinear vibration behavior of elastic-viscoelastic-elastic sandwich (EVES) beams is studied. A finite element (FE) equation taking intoaccount the transverse compression deformation of the viscoelastic core for the EVES beams is derived. In order toaccurately characterize...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8709079/ https://www.ncbi.nlm.nih.gov/pubmed/34947343 http://dx.doi.org/10.3390/ma14247751 |
Sumario: | In the present work, the nonlinear vibration behavior of elastic-viscoelastic-elastic sandwich (EVES) beams is studied. A finite element (FE) equation taking intoaccount the transverse compression deformation of the viscoelastic core for the EVES beams is derived. In order toaccurately characterize the frequency-dependent feature of the viscoelastic materials layer, athird-order seven-parameter Biot model isused. A 2-node 8-DOF element is established to discretize the EVES beams. The experimental testing onEVES beams validates the numerical predication of the FE model. Numerical and analytical investigations are carried on a series of EVES beams with different thicknesses. The results indicate that the presented FE model has better accuracy in predicting the natural frequency of the sandwich beams, and in predicting damping, the accuracy is related to the thickness of each layer. The results of this paper have important reference values for the design and optimization of the viscoelastic sandwich structure. |
---|