Cargando…

Sequential Production of ᴅ-xylonate and Ethanol from Non-Detoxified Corncob at Low-pH by Pichia kudriavzevii via a Two-Stage Fermentation Strategy

Improving the comprehensive utilization of sugars in lignocellulosic biomass is a major challenge for enhancing the economic viability of lignocellulose biorefinement. A robust yeast Pichia kudriavzevii N-X showed excellent performance in ethanol production under high temperature and low pH conditio...

Descripción completa

Detalles Bibliográficos
Autores principales: Ji, Hao, Xu, Ke, Dong, Xiameng, Sun, Da, Jin, Libo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8709110/
https://www.ncbi.nlm.nih.gov/pubmed/34947020
http://dx.doi.org/10.3390/jof7121038
_version_ 1784622853692325888
author Ji, Hao
Xu, Ke
Dong, Xiameng
Sun, Da
Jin, Libo
author_facet Ji, Hao
Xu, Ke
Dong, Xiameng
Sun, Da
Jin, Libo
author_sort Ji, Hao
collection PubMed
description Improving the comprehensive utilization of sugars in lignocellulosic biomass is a major challenge for enhancing the economic viability of lignocellulose biorefinement. A robust yeast Pichia kudriavzevii N-X showed excellent performance in ethanol production under high temperature and low pH conditions and was engineered for ᴅ-xylonate production without xylitol generation. The recombinant strain P. kudriavzevii N-X/S1 was employed for sequential production of ᴅ-xylonate and ethanol from ᴅ-xylose, feeding on ᴅ-glucose without pH control in a two-stage strategy of aerobic and shifting micro-aerobic fermentation. Acid-pretreated corncob without detoxification and filtration was used for ᴅ-xylonate production, then simultaneous saccharification and ethanol fermentation was performed with cellulase added at pH 4.0 and at 40 °C. By this strategy, 33.5 g/L ᴅ-xylonate and 20.8 g/L ethanol were produced at yields of 1.10 g/g ᴅ-xylose and 84.3% of theoretical value, respectively. We propose a promising approach for the sequential production of ᴅ-xylonate and ethanol from non-detoxified corncob using a single microorganism.
format Online
Article
Text
id pubmed-8709110
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-87091102021-12-25 Sequential Production of ᴅ-xylonate and Ethanol from Non-Detoxified Corncob at Low-pH by Pichia kudriavzevii via a Two-Stage Fermentation Strategy Ji, Hao Xu, Ke Dong, Xiameng Sun, Da Jin, Libo J Fungi (Basel) Article Improving the comprehensive utilization of sugars in lignocellulosic biomass is a major challenge for enhancing the economic viability of lignocellulose biorefinement. A robust yeast Pichia kudriavzevii N-X showed excellent performance in ethanol production under high temperature and low pH conditions and was engineered for ᴅ-xylonate production without xylitol generation. The recombinant strain P. kudriavzevii N-X/S1 was employed for sequential production of ᴅ-xylonate and ethanol from ᴅ-xylose, feeding on ᴅ-glucose without pH control in a two-stage strategy of aerobic and shifting micro-aerobic fermentation. Acid-pretreated corncob without detoxification and filtration was used for ᴅ-xylonate production, then simultaneous saccharification and ethanol fermentation was performed with cellulase added at pH 4.0 and at 40 °C. By this strategy, 33.5 g/L ᴅ-xylonate and 20.8 g/L ethanol were produced at yields of 1.10 g/g ᴅ-xylose and 84.3% of theoretical value, respectively. We propose a promising approach for the sequential production of ᴅ-xylonate and ethanol from non-detoxified corncob using a single microorganism. MDPI 2021-12-03 /pmc/articles/PMC8709110/ /pubmed/34947020 http://dx.doi.org/10.3390/jof7121038 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Ji, Hao
Xu, Ke
Dong, Xiameng
Sun, Da
Jin, Libo
Sequential Production of ᴅ-xylonate and Ethanol from Non-Detoxified Corncob at Low-pH by Pichia kudriavzevii via a Two-Stage Fermentation Strategy
title Sequential Production of ᴅ-xylonate and Ethanol from Non-Detoxified Corncob at Low-pH by Pichia kudriavzevii via a Two-Stage Fermentation Strategy
title_full Sequential Production of ᴅ-xylonate and Ethanol from Non-Detoxified Corncob at Low-pH by Pichia kudriavzevii via a Two-Stage Fermentation Strategy
title_fullStr Sequential Production of ᴅ-xylonate and Ethanol from Non-Detoxified Corncob at Low-pH by Pichia kudriavzevii via a Two-Stage Fermentation Strategy
title_full_unstemmed Sequential Production of ᴅ-xylonate and Ethanol from Non-Detoxified Corncob at Low-pH by Pichia kudriavzevii via a Two-Stage Fermentation Strategy
title_short Sequential Production of ᴅ-xylonate and Ethanol from Non-Detoxified Corncob at Low-pH by Pichia kudriavzevii via a Two-Stage Fermentation Strategy
title_sort sequential production of ᴅ-xylonate and ethanol from non-detoxified corncob at low-ph by pichia kudriavzevii via a two-stage fermentation strategy
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8709110/
https://www.ncbi.nlm.nih.gov/pubmed/34947020
http://dx.doi.org/10.3390/jof7121038
work_keys_str_mv AT jihao sequentialproductionofᴅxylonateandethanolfromnondetoxifiedcorncobatlowphbypichiakudriavzeviiviaatwostagefermentationstrategy
AT xuke sequentialproductionofᴅxylonateandethanolfromnondetoxifiedcorncobatlowphbypichiakudriavzeviiviaatwostagefermentationstrategy
AT dongxiameng sequentialproductionofᴅxylonateandethanolfromnondetoxifiedcorncobatlowphbypichiakudriavzeviiviaatwostagefermentationstrategy
AT sunda sequentialproductionofᴅxylonateandethanolfromnondetoxifiedcorncobatlowphbypichiakudriavzeviiviaatwostagefermentationstrategy
AT jinlibo sequentialproductionofᴅxylonateandethanolfromnondetoxifiedcorncobatlowphbypichiakudriavzeviiviaatwostagefermentationstrategy