Cargando…
The Compact Support Neural Network
Neural networks are popular and useful in many fields, but they have the problem of giving high confidence responses for examples that are away from the training data. This makes the neural networks very confident in their prediction while making gross mistakes, thus limiting their reliability for s...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8709146/ https://www.ncbi.nlm.nih.gov/pubmed/34960583 http://dx.doi.org/10.3390/s21248494 |
_version_ | 1784622862844297216 |
---|---|
author | Barbu, Adrian Mou, Hongyu |
author_facet | Barbu, Adrian Mou, Hongyu |
author_sort | Barbu, Adrian |
collection | PubMed |
description | Neural networks are popular and useful in many fields, but they have the problem of giving high confidence responses for examples that are away from the training data. This makes the neural networks very confident in their prediction while making gross mistakes, thus limiting their reliability for safety-critical applications such as autonomous driving and space exploration, etc. This paper introduces a novel neuron generalization that has the standard dot-product-based neuron and the radial basis function (RBF) neuron as two extreme cases of a shape parameter. Using a rectified linear unit (ReLU) as the activation function results in a novel neuron that has compact support, which means its output is zero outside a bounded domain. To address the difficulties in training the proposed neural network, it introduces a novel training method that takes a pretrained standard neural network that is fine-tuned while gradually increasing the shape parameter to the desired value. The theoretical findings of the paper are bound on the gradient of the proposed neuron and proof that a neural network with such neurons has the universal approximation property. This means that the network can approximate any continuous and integrable function with an arbitrary degree of accuracy. The experimental findings on standard benchmark datasets show that the proposed approach has smaller test errors than the state-of-the-art competing methods and outperforms the competing methods in detecting out-of-distribution samples on two out of three datasets. |
format | Online Article Text |
id | pubmed-8709146 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-87091462021-12-25 The Compact Support Neural Network Barbu, Adrian Mou, Hongyu Sensors (Basel) Article Neural networks are popular and useful in many fields, but they have the problem of giving high confidence responses for examples that are away from the training data. This makes the neural networks very confident in their prediction while making gross mistakes, thus limiting their reliability for safety-critical applications such as autonomous driving and space exploration, etc. This paper introduces a novel neuron generalization that has the standard dot-product-based neuron and the radial basis function (RBF) neuron as two extreme cases of a shape parameter. Using a rectified linear unit (ReLU) as the activation function results in a novel neuron that has compact support, which means its output is zero outside a bounded domain. To address the difficulties in training the proposed neural network, it introduces a novel training method that takes a pretrained standard neural network that is fine-tuned while gradually increasing the shape parameter to the desired value. The theoretical findings of the paper are bound on the gradient of the proposed neuron and proof that a neural network with such neurons has the universal approximation property. This means that the network can approximate any continuous and integrable function with an arbitrary degree of accuracy. The experimental findings on standard benchmark datasets show that the proposed approach has smaller test errors than the state-of-the-art competing methods and outperforms the competing methods in detecting out-of-distribution samples on two out of three datasets. MDPI 2021-12-20 /pmc/articles/PMC8709146/ /pubmed/34960583 http://dx.doi.org/10.3390/s21248494 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Barbu, Adrian Mou, Hongyu The Compact Support Neural Network |
title | The Compact Support Neural Network |
title_full | The Compact Support Neural Network |
title_fullStr | The Compact Support Neural Network |
title_full_unstemmed | The Compact Support Neural Network |
title_short | The Compact Support Neural Network |
title_sort | compact support neural network |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8709146/ https://www.ncbi.nlm.nih.gov/pubmed/34960583 http://dx.doi.org/10.3390/s21248494 |
work_keys_str_mv | AT barbuadrian thecompactsupportneuralnetwork AT mouhongyu thecompactsupportneuralnetwork AT barbuadrian compactsupportneuralnetwork AT mouhongyu compactsupportneuralnetwork |