Cargando…

DFT/TD-DFT Framework of Mixed-Metal Complexes with Symmetrical and Unsymmetrical Bridging Ligands—Step-By-Step Investigations: Mononuclear, Dinuclear Homometallic, and Heterometallic for Optoelectronic Applications

Recently, mono- and dinuclear complexes have been in the interest of scientists due to their potential application in optoelectronics. Herein, progressive theoretical investigations starting from mononuclear followed by homo- and heterometallic dinuclear osmium and/or ruthenium complexes with NCN-cy...

Descripción completa

Detalles Bibliográficos
Autor principal: Zych, Dawid
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8709181/
https://www.ncbi.nlm.nih.gov/pubmed/34947376
http://dx.doi.org/10.3390/ma14247783
_version_ 1784622871585226752
author Zych, Dawid
author_facet Zych, Dawid
author_sort Zych, Dawid
collection PubMed
description Recently, mono- and dinuclear complexes have been in the interest of scientists due to their potential application in optoelectronics. Herein, progressive theoretical investigations starting from mononuclear followed by homo- and heterometallic dinuclear osmium and/or ruthenium complexes with NCN-cyclometalating bridging ligands substituted by one or two kinds of heteroaryl groups (pyrazol-1-yl and 4-(2,2-dimethylpropyloxy)pyrid-2-yl) providing the short/long axial symmetry or asymmetry are presented. Step-by-step information about the particular part that built the mixed-metal complexes is crucial to understanding their behavior and checking the necessity of their eventual studies. Evaluation by using density functional theory (DFT) calculations allowed gaining information about the frontier orbitals, energy gaps, and physical parameters of complexes and their oxidized forms. Through time-dependent density functional theory (TD-DFT), calculations showed the optical properties, with a particular emphasis on the nature of low-energy bands. The presented results are a clear indication for other scientists in the field of chemistry and materials science.
format Online
Article
Text
id pubmed-8709181
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-87091812021-12-25 DFT/TD-DFT Framework of Mixed-Metal Complexes with Symmetrical and Unsymmetrical Bridging Ligands—Step-By-Step Investigations: Mononuclear, Dinuclear Homometallic, and Heterometallic for Optoelectronic Applications Zych, Dawid Materials (Basel) Article Recently, mono- and dinuclear complexes have been in the interest of scientists due to their potential application in optoelectronics. Herein, progressive theoretical investigations starting from mononuclear followed by homo- and heterometallic dinuclear osmium and/or ruthenium complexes with NCN-cyclometalating bridging ligands substituted by one or two kinds of heteroaryl groups (pyrazol-1-yl and 4-(2,2-dimethylpropyloxy)pyrid-2-yl) providing the short/long axial symmetry or asymmetry are presented. Step-by-step information about the particular part that built the mixed-metal complexes is crucial to understanding their behavior and checking the necessity of their eventual studies. Evaluation by using density functional theory (DFT) calculations allowed gaining information about the frontier orbitals, energy gaps, and physical parameters of complexes and their oxidized forms. Through time-dependent density functional theory (TD-DFT), calculations showed the optical properties, with a particular emphasis on the nature of low-energy bands. The presented results are a clear indication for other scientists in the field of chemistry and materials science. MDPI 2021-12-16 /pmc/articles/PMC8709181/ /pubmed/34947376 http://dx.doi.org/10.3390/ma14247783 Text en © 2021 by the author. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Zych, Dawid
DFT/TD-DFT Framework of Mixed-Metal Complexes with Symmetrical and Unsymmetrical Bridging Ligands—Step-By-Step Investigations: Mononuclear, Dinuclear Homometallic, and Heterometallic for Optoelectronic Applications
title DFT/TD-DFT Framework of Mixed-Metal Complexes with Symmetrical and Unsymmetrical Bridging Ligands—Step-By-Step Investigations: Mononuclear, Dinuclear Homometallic, and Heterometallic for Optoelectronic Applications
title_full DFT/TD-DFT Framework of Mixed-Metal Complexes with Symmetrical and Unsymmetrical Bridging Ligands—Step-By-Step Investigations: Mononuclear, Dinuclear Homometallic, and Heterometallic for Optoelectronic Applications
title_fullStr DFT/TD-DFT Framework of Mixed-Metal Complexes with Symmetrical and Unsymmetrical Bridging Ligands—Step-By-Step Investigations: Mononuclear, Dinuclear Homometallic, and Heterometallic for Optoelectronic Applications
title_full_unstemmed DFT/TD-DFT Framework of Mixed-Metal Complexes with Symmetrical and Unsymmetrical Bridging Ligands—Step-By-Step Investigations: Mononuclear, Dinuclear Homometallic, and Heterometallic for Optoelectronic Applications
title_short DFT/TD-DFT Framework of Mixed-Metal Complexes with Symmetrical and Unsymmetrical Bridging Ligands—Step-By-Step Investigations: Mononuclear, Dinuclear Homometallic, and Heterometallic for Optoelectronic Applications
title_sort dft/td-dft framework of mixed-metal complexes with symmetrical and unsymmetrical bridging ligands—step-by-step investigations: mononuclear, dinuclear homometallic, and heterometallic for optoelectronic applications
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8709181/
https://www.ncbi.nlm.nih.gov/pubmed/34947376
http://dx.doi.org/10.3390/ma14247783
work_keys_str_mv AT zychdawid dfttddftframeworkofmixedmetalcomplexeswithsymmetricalandunsymmetricalbridgingligandsstepbystepinvestigationsmononucleardinuclearhomometallicandheterometallicforoptoelectronicapplications