Cargando…
DFT/TD-DFT Framework of Mixed-Metal Complexes with Symmetrical and Unsymmetrical Bridging Ligands—Step-By-Step Investigations: Mononuclear, Dinuclear Homometallic, and Heterometallic for Optoelectronic Applications
Recently, mono- and dinuclear complexes have been in the interest of scientists due to their potential application in optoelectronics. Herein, progressive theoretical investigations starting from mononuclear followed by homo- and heterometallic dinuclear osmium and/or ruthenium complexes with NCN-cy...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8709181/ https://www.ncbi.nlm.nih.gov/pubmed/34947376 http://dx.doi.org/10.3390/ma14247783 |
_version_ | 1784622871585226752 |
---|---|
author | Zych, Dawid |
author_facet | Zych, Dawid |
author_sort | Zych, Dawid |
collection | PubMed |
description | Recently, mono- and dinuclear complexes have been in the interest of scientists due to their potential application in optoelectronics. Herein, progressive theoretical investigations starting from mononuclear followed by homo- and heterometallic dinuclear osmium and/or ruthenium complexes with NCN-cyclometalating bridging ligands substituted by one or two kinds of heteroaryl groups (pyrazol-1-yl and 4-(2,2-dimethylpropyloxy)pyrid-2-yl) providing the short/long axial symmetry or asymmetry are presented. Step-by-step information about the particular part that built the mixed-metal complexes is crucial to understanding their behavior and checking the necessity of their eventual studies. Evaluation by using density functional theory (DFT) calculations allowed gaining information about the frontier orbitals, energy gaps, and physical parameters of complexes and their oxidized forms. Through time-dependent density functional theory (TD-DFT), calculations showed the optical properties, with a particular emphasis on the nature of low-energy bands. The presented results are a clear indication for other scientists in the field of chemistry and materials science. |
format | Online Article Text |
id | pubmed-8709181 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-87091812021-12-25 DFT/TD-DFT Framework of Mixed-Metal Complexes with Symmetrical and Unsymmetrical Bridging Ligands—Step-By-Step Investigations: Mononuclear, Dinuclear Homometallic, and Heterometallic for Optoelectronic Applications Zych, Dawid Materials (Basel) Article Recently, mono- and dinuclear complexes have been in the interest of scientists due to their potential application in optoelectronics. Herein, progressive theoretical investigations starting from mononuclear followed by homo- and heterometallic dinuclear osmium and/or ruthenium complexes with NCN-cyclometalating bridging ligands substituted by one or two kinds of heteroaryl groups (pyrazol-1-yl and 4-(2,2-dimethylpropyloxy)pyrid-2-yl) providing the short/long axial symmetry or asymmetry are presented. Step-by-step information about the particular part that built the mixed-metal complexes is crucial to understanding their behavior and checking the necessity of their eventual studies. Evaluation by using density functional theory (DFT) calculations allowed gaining information about the frontier orbitals, energy gaps, and physical parameters of complexes and their oxidized forms. Through time-dependent density functional theory (TD-DFT), calculations showed the optical properties, with a particular emphasis on the nature of low-energy bands. The presented results are a clear indication for other scientists in the field of chemistry and materials science. MDPI 2021-12-16 /pmc/articles/PMC8709181/ /pubmed/34947376 http://dx.doi.org/10.3390/ma14247783 Text en © 2021 by the author. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zych, Dawid DFT/TD-DFT Framework of Mixed-Metal Complexes with Symmetrical and Unsymmetrical Bridging Ligands—Step-By-Step Investigations: Mononuclear, Dinuclear Homometallic, and Heterometallic for Optoelectronic Applications |
title | DFT/TD-DFT Framework of Mixed-Metal Complexes with Symmetrical and Unsymmetrical Bridging Ligands—Step-By-Step Investigations: Mononuclear, Dinuclear Homometallic, and Heterometallic for Optoelectronic Applications |
title_full | DFT/TD-DFT Framework of Mixed-Metal Complexes with Symmetrical and Unsymmetrical Bridging Ligands—Step-By-Step Investigations: Mononuclear, Dinuclear Homometallic, and Heterometallic for Optoelectronic Applications |
title_fullStr | DFT/TD-DFT Framework of Mixed-Metal Complexes with Symmetrical and Unsymmetrical Bridging Ligands—Step-By-Step Investigations: Mononuclear, Dinuclear Homometallic, and Heterometallic for Optoelectronic Applications |
title_full_unstemmed | DFT/TD-DFT Framework of Mixed-Metal Complexes with Symmetrical and Unsymmetrical Bridging Ligands—Step-By-Step Investigations: Mononuclear, Dinuclear Homometallic, and Heterometallic for Optoelectronic Applications |
title_short | DFT/TD-DFT Framework of Mixed-Metal Complexes with Symmetrical and Unsymmetrical Bridging Ligands—Step-By-Step Investigations: Mononuclear, Dinuclear Homometallic, and Heterometallic for Optoelectronic Applications |
title_sort | dft/td-dft framework of mixed-metal complexes with symmetrical and unsymmetrical bridging ligands—step-by-step investigations: mononuclear, dinuclear homometallic, and heterometallic for optoelectronic applications |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8709181/ https://www.ncbi.nlm.nih.gov/pubmed/34947376 http://dx.doi.org/10.3390/ma14247783 |
work_keys_str_mv | AT zychdawid dfttddftframeworkofmixedmetalcomplexeswithsymmetricalandunsymmetricalbridgingligandsstepbystepinvestigationsmononucleardinuclearhomometallicandheterometallicforoptoelectronicapplications |