Cargando…
Cyclic Photoisomerization of Azobenzene in Atomistic Simulations: Modeling the Effect of Light on Columnar Aggregates of Azo Stars
This computational study investigates the influence of light on supramolecular aggregates of three-arm azobenzene stars. Every star contains three azobenzene (azo) moieties, each able to undergo reversible photoisomerization. In solution, the azo stars build column-shaped supramolecular aggregates....
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8709326/ https://www.ncbi.nlm.nih.gov/pubmed/34946756 http://dx.doi.org/10.3390/molecules26247674 |
_version_ | 1784622907558723584 |
---|---|
author | Koch, Markus Saphiannikova, Marina Guskova, Olga |
author_facet | Koch, Markus Saphiannikova, Marina Guskova, Olga |
author_sort | Koch, Markus |
collection | PubMed |
description | This computational study investigates the influence of light on supramolecular aggregates of three-arm azobenzene stars. Every star contains three azobenzene (azo) moieties, each able to undergo reversible photoisomerization. In solution, the azo stars build column-shaped supramolecular aggregates. Previous experimental works report severe morphological changes of these aggregates under UV–Vis light. However, the underlying molecular mechanisms are still debated. Here we aim to elucidate how light affects the structure and stability of the columnar stacks on the molecular scale. The system is investigated using fully atomistic molecular dynamics (MD) simulations. To implement the effects of light, we first developed a stochastic model of the cyclic photoisomerization of azobenzene. This model reproduces the collective photoisomerization kinetics of the azo stars in good agreement with theory and previous experiments. We then apply light of various intensities and wavelengths on an equilibrated columnar stack of azo stars in water. The simulations indicate that the aggregate does not break into separate fragments upon light irradiation. Instead, the stack develops defects in the form of molecular shifts and reorientations and, as a result, it eventually loses its columnar shape. The mechanism and driving forces behind this order–disorder structural transition are clarified based on the simulations. In the end, we provide a new interpretation of the experimentally observed morphological changes. |
format | Online Article Text |
id | pubmed-8709326 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-87093262021-12-25 Cyclic Photoisomerization of Azobenzene in Atomistic Simulations: Modeling the Effect of Light on Columnar Aggregates of Azo Stars Koch, Markus Saphiannikova, Marina Guskova, Olga Molecules Article This computational study investigates the influence of light on supramolecular aggregates of three-arm azobenzene stars. Every star contains three azobenzene (azo) moieties, each able to undergo reversible photoisomerization. In solution, the azo stars build column-shaped supramolecular aggregates. Previous experimental works report severe morphological changes of these aggregates under UV–Vis light. However, the underlying molecular mechanisms are still debated. Here we aim to elucidate how light affects the structure and stability of the columnar stacks on the molecular scale. The system is investigated using fully atomistic molecular dynamics (MD) simulations. To implement the effects of light, we first developed a stochastic model of the cyclic photoisomerization of azobenzene. This model reproduces the collective photoisomerization kinetics of the azo stars in good agreement with theory and previous experiments. We then apply light of various intensities and wavelengths on an equilibrated columnar stack of azo stars in water. The simulations indicate that the aggregate does not break into separate fragments upon light irradiation. Instead, the stack develops defects in the form of molecular shifts and reorientations and, as a result, it eventually loses its columnar shape. The mechanism and driving forces behind this order–disorder structural transition are clarified based on the simulations. In the end, we provide a new interpretation of the experimentally observed morphological changes. MDPI 2021-12-18 /pmc/articles/PMC8709326/ /pubmed/34946756 http://dx.doi.org/10.3390/molecules26247674 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Koch, Markus Saphiannikova, Marina Guskova, Olga Cyclic Photoisomerization of Azobenzene in Atomistic Simulations: Modeling the Effect of Light on Columnar Aggregates of Azo Stars |
title | Cyclic Photoisomerization of Azobenzene in Atomistic Simulations: Modeling the Effect of Light on Columnar Aggregates of Azo Stars |
title_full | Cyclic Photoisomerization of Azobenzene in Atomistic Simulations: Modeling the Effect of Light on Columnar Aggregates of Azo Stars |
title_fullStr | Cyclic Photoisomerization of Azobenzene in Atomistic Simulations: Modeling the Effect of Light on Columnar Aggregates of Azo Stars |
title_full_unstemmed | Cyclic Photoisomerization of Azobenzene in Atomistic Simulations: Modeling the Effect of Light on Columnar Aggregates of Azo Stars |
title_short | Cyclic Photoisomerization of Azobenzene in Atomistic Simulations: Modeling the Effect of Light on Columnar Aggregates of Azo Stars |
title_sort | cyclic photoisomerization of azobenzene in atomistic simulations: modeling the effect of light on columnar aggregates of azo stars |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8709326/ https://www.ncbi.nlm.nih.gov/pubmed/34946756 http://dx.doi.org/10.3390/molecules26247674 |
work_keys_str_mv | AT kochmarkus cyclicphotoisomerizationofazobenzeneinatomisticsimulationsmodelingtheeffectoflightoncolumnaraggregatesofazostars AT saphiannikovamarina cyclicphotoisomerizationofazobenzeneinatomisticsimulationsmodelingtheeffectoflightoncolumnaraggregatesofazostars AT guskovaolga cyclicphotoisomerizationofazobenzeneinatomisticsimulationsmodelingtheeffectoflightoncolumnaraggregatesofazostars |