Cargando…
The Impact of Pre-Slaughter Fasting on the Ruminal Microbial Population of Commercial Angus Steers
Diet impacts the composition of the ruminal microbiota; however, prior to slaughter, cattle are fasted, which may change the ruminal microbial ecosystem structure and lead to dysbiosis. The objective of this study was to determine changes occurring in the rumen after pre-slaughter fasting, which can...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8709334/ https://www.ncbi.nlm.nih.gov/pubmed/34946226 http://dx.doi.org/10.3390/microorganisms9122625 |
Sumario: | Diet impacts the composition of the ruminal microbiota; however, prior to slaughter, cattle are fasted, which may change the ruminal microbial ecosystem structure and lead to dysbiosis. The objective of this study was to determine changes occurring in the rumen after pre-slaughter fasting, which can allow harmful pathogens an opportunity to establish in the rumen. Ruminal samples were collected before and after pre-slaughter fasting from seventeen commercial Angus steers. DNA extraction and 16S rRNA gene sequencing were performed to determine the ruminal microbiota, as well as volatile fatty acid (VFA) concentrations. Microbial richness (Chao 1 index), evenness, and Shannon diversity index all increased after fasting (p ≤ 0.040). During fasting, the two predominant families Prevotellaceae and Ruminococcaceae decreased (p ≤ 0.029), whereas the remaining minor families increased (p < 0.001). Fasting increased Blautia and Methanosphaera (p ≤ 0.003), while Campylobacter and Treponema tended to increase (p ≤ 0.086). Butyrate concentration tended to decrease (p = 0.068) after fasting. The present findings support that fasting causes ruminal nutrient depletion resulting in dysbiosis, allowing opportunistic pathogens to exploit the void in the ruminal ecological niche. |
---|