Cargando…
An Efficient Human Instance-Guided Framework for Video Action Recognition
In recent years, human action recognition has been studied by many computer vision researchers. Recent studies have attempted to use two-stream networks using appearance and motion features, but most of these approaches focused on clip-level video action recognition. In contrast to traditional metho...
Autores principales: | Lee, Inwoong, Kim, Doyoung, Wee, Dongyoon, Lee, Sanghoon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8709376/ https://www.ncbi.nlm.nih.gov/pubmed/34960404 http://dx.doi.org/10.3390/s21248309 |
Ejemplares similares
-
Action Recognition Using Close-Up of Maximum Activation and ETRI-Activity3D LivingLab Dataset
por: Kim, Doyoung, et al.
Publicado: (2021) -
Instance Sequence Queries for Video Instance Segmentation with Transformers
por: Xu, Zhujun, et al.
Publicado: (2021) -
A Deep Sequence Learning Framework for Action Recognition in Small-Scale Depth Video Dataset
por: Bulbul, Mohammad Farhad, et al.
Publicado: (2022) -
Real-Time Instance Segmentation of Traffic Videos for Embedded Devices
por: Panero Martinez, Ruben, et al.
Publicado: (2021) -
An Efficient Anomaly Recognition Framework Using an Attention Residual LSTM in Surveillance Videos
por: Ullah, Waseem, et al.
Publicado: (2021)