Cargando…
Rotating Machinery Fault Diagnosis Method by Combining Time-Frequency Domain Features and CNN Knowledge Transfer
Aiming at the problem of fault diagnosis when there are only a few labeled samples in the large amount of data collected during the operation of rotating machinery, this paper proposes a fault diagnosis method based on knowledge transfer in deep learning. First, we describe the data collected during...
Autores principales: | Ye, Lihao, Ma, Xue, Wen, Chenglin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8709426/ https://www.ncbi.nlm.nih.gov/pubmed/34960262 http://dx.doi.org/10.3390/s21248168 |
Ejemplares similares
-
An Imbalanced Fault Diagnosis Method Based on TFFO and CNN for Rotating Machinery
por: Zhang, Long, et al.
Publicado: (2022) -
Improved Variational Mode Decomposition and CNN for Intelligent Rotating Machinery Fault Diagnosis
por: Xiao, Qiyang, et al.
Publicado: (2022) -
A Multimodal Feature Fusion-Based Deep Learning Method for Online Fault Diagnosis of Rotating Machinery
por: Zhou, Funa, et al.
Publicado: (2018) -
A Novel Method for Fault Diagnosis of Rotating Machinery
por: Tang, Meng, et al.
Publicado: (2022) -
A Weighted Subdomain Adaptation Network for Partial Transfer Fault Diagnosis of Rotating Machinery
por: Jia, Sixiang, et al.
Publicado: (2021)