Cargando…
Temporal Weighted Averaging for Asynchronous Federated Intrusion Detection Systems
Federated learning (FL) is an emerging subdomain of machine learning (ML) in a distributed and heterogeneous setup. It provides efficient training architecture, sufficient data, and privacy-preserving communication for boosting the performance and feasibility of ML algorithms. In this environment, t...
Autores principales: | Agrawal, Shaashwat, Chowdhuri, Aditi, Sarkar, Sagnik, Selvanambi, Ramani, Gadekallu, Thippa Reddy |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8709749/ https://www.ncbi.nlm.nih.gov/pubmed/34956350 http://dx.doi.org/10.1155/2021/5844728 |
Ejemplares similares
-
Genetic CFL: Hyperparameter Optimization in Clustered Federated Learning
por: Agrawal, Shaashwat, et al.
Publicado: (2021) -
A Comprehensive Survey on Federated Learning Techniques for Healthcare Informatics
por: Dasaradharami Reddy, K., et al.
Publicado: (2023) -
Pilot Decontamination Using Asynchronous Fractional Pilot Scheduling in Massive MIMO Systems
por: Zahoor, Muhammad Irshad, et al.
Publicado: (2020) -
A multiple criteria decision analysis based approach to remove uncertainty in SMP models
por: Yenduri, Gokul, et al.
Publicado: (2022) -
Integration of Blockchain Technology and Federated Learning in Vehicular (IoT) Networks: A Comprehensive Survey
por: Javed, Abdul Rehman, et al.
Publicado: (2022)