Cargando…
Bioinformatics analysis of long non-coding RNA-associated competing endogenous RNA network in schizophrenia
Schizophrenia (SCZ) is a serious psychiatric condition with a 1% lifetime risk. SCZ is one of the top ten global causes of disabilities. Despite numerous attempts to understand the function of genetic factors in SCZ development, genetic components in SCZ pathophysiology remain unknown. The competing...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8709859/ https://www.ncbi.nlm.nih.gov/pubmed/34952924 http://dx.doi.org/10.1038/s41598-021-03993-3 |
_version_ | 1784623037127065600 |
---|---|
author | Sabaie, Hani Moghaddam, Madiheh Mazaheri Moghaddam, Marziyeh Mazaheri Ahangar, Noora Karim Asadi, Mohammad Reza Hussen, Bashdar Mahmud Taheri, Mohammad Rezazadeh, Maryam |
author_facet | Sabaie, Hani Moghaddam, Madiheh Mazaheri Moghaddam, Marziyeh Mazaheri Ahangar, Noora Karim Asadi, Mohammad Reza Hussen, Bashdar Mahmud Taheri, Mohammad Rezazadeh, Maryam |
author_sort | Sabaie, Hani |
collection | PubMed |
description | Schizophrenia (SCZ) is a serious psychiatric condition with a 1% lifetime risk. SCZ is one of the top ten global causes of disabilities. Despite numerous attempts to understand the function of genetic factors in SCZ development, genetic components in SCZ pathophysiology remain unknown. The competing endogenous RNA (ceRNA) network has been demonstrated to be involved in the development of many kinds of diseases. The ceRNA hypothesis states that cross-talks between coding and non-coding RNAs, including long non-coding RNAs (lncRNAs), via miRNA complementary sequences known as miRNA response elements, creates a large regulatory network across the transcriptome. In the present study, we developed a lncRNA-related ceRNA network to elucidate molecular regulatory mechanisms involved in SCZ. Microarray datasets associated with brain regions (GSE53987) and lymphoblasts (LBs) derived from peripheral blood (sample set B from GSE73129) of SCZ patients and control subjects containing information about both mRNAs and lncRNAs were downloaded from the Gene Expression Omnibus database. The GSE53987 comprised 48 brain samples taken from SCZ patients (15 HPC: hippocampus, 15 BA46: Brodmann area 46, 18 STR: striatum) and 55 brain samples taken from control subjects (18 HPC, 19 BA46, 18 STR). The sample set B of GSE73129 comprised 30 LB samples (15 patients with SCZ and 15 controls). Differentially expressed mRNAs (DEmRNAs) and lncRNAs (DElncRNAs) were identified using the limma package of the R software. Using DIANA-LncBase, Human MicroRNA Disease Database (HMDD), and miRTarBase, the lncRNA- associated ceRNA network was generated. Pathway enrichment of DEmRNAs was performed using the Enrichr tool. We developed a protein–protein interaction network of DEmRNAs and identified the top five hub genes by the use of STRING and Cytoscape, respectively. Eventually, the hub genes, DElncRNAs, and predictive miRNAs were chosen to reconstruct the subceRNA networks. Our bioinformatics analysis showed that twelve key DEmRNAs, including BDNF, VEGFA, FGF2, FOS, CD44, SOX2, NRAS, SPARC, ZFP36, FGG, ELAVL1, and STARD13, participate in the ceRNA network in SCZ. We also identified DLX6-AS1, NEAT1, MINCR, LINC01094, DLGAP1-AS1, BABAM2-AS1, PAX8-AS1, ZFHX4-AS1, XIST, and MALAT1 as key DElncRNAs regulating the genes mentioned above. Furthermore, expression of 15 DEmRNAs (e.g., ADM and HLA-DRB1) and one DElncRNA (XIST) were changed in both the brain and LB, suggesting that they could be regarded as candidates for future biomarker studies. The study indicated that ceRNAs could be research candidates for investigating SCZ molecular pathways. |
format | Online Article Text |
id | pubmed-8709859 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-87098592021-12-28 Bioinformatics analysis of long non-coding RNA-associated competing endogenous RNA network in schizophrenia Sabaie, Hani Moghaddam, Madiheh Mazaheri Moghaddam, Marziyeh Mazaheri Ahangar, Noora Karim Asadi, Mohammad Reza Hussen, Bashdar Mahmud Taheri, Mohammad Rezazadeh, Maryam Sci Rep Article Schizophrenia (SCZ) is a serious psychiatric condition with a 1% lifetime risk. SCZ is one of the top ten global causes of disabilities. Despite numerous attempts to understand the function of genetic factors in SCZ development, genetic components in SCZ pathophysiology remain unknown. The competing endogenous RNA (ceRNA) network has been demonstrated to be involved in the development of many kinds of diseases. The ceRNA hypothesis states that cross-talks between coding and non-coding RNAs, including long non-coding RNAs (lncRNAs), via miRNA complementary sequences known as miRNA response elements, creates a large regulatory network across the transcriptome. In the present study, we developed a lncRNA-related ceRNA network to elucidate molecular regulatory mechanisms involved in SCZ. Microarray datasets associated with brain regions (GSE53987) and lymphoblasts (LBs) derived from peripheral blood (sample set B from GSE73129) of SCZ patients and control subjects containing information about both mRNAs and lncRNAs were downloaded from the Gene Expression Omnibus database. The GSE53987 comprised 48 brain samples taken from SCZ patients (15 HPC: hippocampus, 15 BA46: Brodmann area 46, 18 STR: striatum) and 55 brain samples taken from control subjects (18 HPC, 19 BA46, 18 STR). The sample set B of GSE73129 comprised 30 LB samples (15 patients with SCZ and 15 controls). Differentially expressed mRNAs (DEmRNAs) and lncRNAs (DElncRNAs) were identified using the limma package of the R software. Using DIANA-LncBase, Human MicroRNA Disease Database (HMDD), and miRTarBase, the lncRNA- associated ceRNA network was generated. Pathway enrichment of DEmRNAs was performed using the Enrichr tool. We developed a protein–protein interaction network of DEmRNAs and identified the top five hub genes by the use of STRING and Cytoscape, respectively. Eventually, the hub genes, DElncRNAs, and predictive miRNAs were chosen to reconstruct the subceRNA networks. Our bioinformatics analysis showed that twelve key DEmRNAs, including BDNF, VEGFA, FGF2, FOS, CD44, SOX2, NRAS, SPARC, ZFP36, FGG, ELAVL1, and STARD13, participate in the ceRNA network in SCZ. We also identified DLX6-AS1, NEAT1, MINCR, LINC01094, DLGAP1-AS1, BABAM2-AS1, PAX8-AS1, ZFHX4-AS1, XIST, and MALAT1 as key DElncRNAs regulating the genes mentioned above. Furthermore, expression of 15 DEmRNAs (e.g., ADM and HLA-DRB1) and one DElncRNA (XIST) were changed in both the brain and LB, suggesting that they could be regarded as candidates for future biomarker studies. The study indicated that ceRNAs could be research candidates for investigating SCZ molecular pathways. Nature Publishing Group UK 2021-12-24 /pmc/articles/PMC8709859/ /pubmed/34952924 http://dx.doi.org/10.1038/s41598-021-03993-3 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Sabaie, Hani Moghaddam, Madiheh Mazaheri Moghaddam, Marziyeh Mazaheri Ahangar, Noora Karim Asadi, Mohammad Reza Hussen, Bashdar Mahmud Taheri, Mohammad Rezazadeh, Maryam Bioinformatics analysis of long non-coding RNA-associated competing endogenous RNA network in schizophrenia |
title | Bioinformatics analysis of long non-coding RNA-associated competing endogenous RNA network in schizophrenia |
title_full | Bioinformatics analysis of long non-coding RNA-associated competing endogenous RNA network in schizophrenia |
title_fullStr | Bioinformatics analysis of long non-coding RNA-associated competing endogenous RNA network in schizophrenia |
title_full_unstemmed | Bioinformatics analysis of long non-coding RNA-associated competing endogenous RNA network in schizophrenia |
title_short | Bioinformatics analysis of long non-coding RNA-associated competing endogenous RNA network in schizophrenia |
title_sort | bioinformatics analysis of long non-coding rna-associated competing endogenous rna network in schizophrenia |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8709859/ https://www.ncbi.nlm.nih.gov/pubmed/34952924 http://dx.doi.org/10.1038/s41598-021-03993-3 |
work_keys_str_mv | AT sabaiehani bioinformaticsanalysisoflongnoncodingrnaassociatedcompetingendogenousrnanetworkinschizophrenia AT moghaddammadihehmazaheri bioinformaticsanalysisoflongnoncodingrnaassociatedcompetingendogenousrnanetworkinschizophrenia AT moghaddammarziyehmazaheri bioinformaticsanalysisoflongnoncodingrnaassociatedcompetingendogenousrnanetworkinschizophrenia AT ahangarnoorakarim bioinformaticsanalysisoflongnoncodingrnaassociatedcompetingendogenousrnanetworkinschizophrenia AT asadimohammadreza bioinformaticsanalysisoflongnoncodingrnaassociatedcompetingendogenousrnanetworkinschizophrenia AT hussenbashdarmahmud bioinformaticsanalysisoflongnoncodingrnaassociatedcompetingendogenousrnanetworkinschizophrenia AT taherimohammad bioinformaticsanalysisoflongnoncodingrnaassociatedcompetingendogenousrnanetworkinschizophrenia AT rezazadehmaryam bioinformaticsanalysisoflongnoncodingrnaassociatedcompetingendogenousrnanetworkinschizophrenia |