Cargando…
A review on deep learning MRI reconstruction without fully sampled k-space
BACKGROUND: Magnetic resonance imaging (MRI) is an effective auxiliary diagnostic method in clinical medicine, but it has always suffered from the problem of long acquisition time. Compressed sensing and parallel imaging are two common techniques to accelerate MRI reconstruction. Recently, deep lear...
Autores principales: | Zeng, Gushan, Guo, Yi, Zhan, Jiaying, Wang, Zi, Lai, Zongying, Du, Xiaofeng, Qu, Xiaobo, Guo, Di |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8710001/ https://www.ncbi.nlm.nih.gov/pubmed/34952572 http://dx.doi.org/10.1186/s12880-021-00727-9 |
Ejemplares similares
-
Joint sparse reconstruction of multi-contrast MRI images with graph based redundant wavelet transform
por: Lai, Zongying, et al.
Publicado: (2018) -
A Note on the Iterative MRI Reconstruction from Nonuniform
k-Space Data
por: Knopp, Tobias, et al.
Publicado: (2007) -
Closed-loop control of k-space sampling via physiologic feedback for cine MRI
por: Contijoch, Francisco, et al.
Publicado: (2020) -
Emerging Trends in Fast MRI Using Deep-Learning Reconstruction on Undersampled k-Space Data: A Systematic Review
por: Singh, Dilbag, et al.
Publicado: (2023) -
Continuous adaptive radial sampling of k-space from real-time physiologic feedback in MRI
por: Contijoch, Francisco, et al.
Publicado: (2015)