Cargando…

Quantification and Identification of Post-Translational Modifications Using Modern Proteomics Approaches

Post-translational modifications (PTMs) occur dynamically, allowing cells to quickly respond to changes in the environment. Lysine residues can be targeted by several modifications including acylations (acetylation, succinylation, malonylation, glutarylation, and others), methylation, ubiquitination...

Descripción completa

Detalles Bibliográficos
Autores principales: Holtz, Anja, Basisty, Nathan, Schilling, Birgit
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8710235/
https://www.ncbi.nlm.nih.gov/pubmed/33950494
http://dx.doi.org/10.1007/978-1-0716-1024-4_16
Descripción
Sumario:Post-translational modifications (PTMs) occur dynamically, allowing cells to quickly respond to changes in the environment. Lysine residues can be targeted by several modifications including acylations (acetylation, succinylation, malonylation, glutarylation, and others), methylation, ubiquitination, and other modifications. One of the most efficient methods for the identification of post-translational modifications is utilizing immunoaffinity enrichment followed by high-resolution mass spectrometry. This workflow can be coupled with comprehensive data-independent acquisition (DIA) mass spectrometry to be a high-throughput, label-free PTM quantification approach. Below we describe a detailed protocol to process tissue by homogenization and proteolytically digest proteins, followed by immunoaffinity enrichment of lysine-acetylated peptides to identify and quantify relative changes of acetylation comparing different conditions.