Cargando…
Quantification of antibiotic resistance genes and mobile genetic in dairy manure
BACKGROUND: Antibiotic resistance genes (ARGs) are considered to be emerging environmental contaminants of concern potentially posing risks to human and animal health, and this research studied the prevalence of antimicrobial resistance in dairy manure. METHODS: This study is focused on investigatin...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8710253/ https://www.ncbi.nlm.nih.gov/pubmed/35036113 http://dx.doi.org/10.7717/peerj.12408 |
_version_ | 1784623119573450752 |
---|---|
author | Wang, Yi Pandey, Pramod Chiu, Colleen Jeannotte, Richard Kuppu, Sundaram Zhang, Ruihong Pereira, Richard Weimer, Bart C. Nitin, Nitin Aly, Sharif S. |
author_facet | Wang, Yi Pandey, Pramod Chiu, Colleen Jeannotte, Richard Kuppu, Sundaram Zhang, Ruihong Pereira, Richard Weimer, Bart C. Nitin, Nitin Aly, Sharif S. |
author_sort | Wang, Yi |
collection | PubMed |
description | BACKGROUND: Antibiotic resistance genes (ARGs) are considered to be emerging environmental contaminants of concern potentially posing risks to human and animal health, and this research studied the prevalence of antimicrobial resistance in dairy manure. METHODS: This study is focused on investigating prevalence of ARGs in California dairy farm manure under current common different manure management. A total of 33 manure samples were collected from multiple manure treatment conditions: (1) flushed manure (FM), (2) fresh pile (FP), (3) compost pile (CP), (4) primary lagoon (PL), and (5) secondary lagoon (SL). After DNA extraction, all fecal samples were screened by PCR for the presence of eight ARGs: four sulfonamide ARGs (sulI, sulII, sulIII, sulA), two tetracycline ARGs (tetW, tetO), two macrolide-lincosamide-streptogramin B (MLS(B)) ARGs (ermB, ermF). Samples were also screened for two mobile genetic elements (MGEs) (intI1, tnpA), which are responsible for dissemination of ARGs. Quantitative PCR was then used to screen all samples for five ARGs (sulII, tetW, ermF, tnpA and intI1). RESULTS: Prevalence of genes varied among sample types, but all genes were detectable in different manure types. Results showed that liquid-solid separation, piling, and lagoon conditions had limited effects on reducing ARGs and MGEs, and the effect was only found significant on tetW (p = 0.01). Besides, network analysis indicated that sulII was associated with tnpA (p < 0.05), and Psychrobacter and Pseudomonas as opportunistic human pathogens, were potential ARG/MGE hosts (p < 0.05). This research indicated current different manure management practices in California dairy farms has limited effects on reducing ARGs and MGEs. Improvement of different manure management in dairy farms is thus important to mitigate dissemination of ARGs into the environment. |
format | Online Article Text |
id | pubmed-8710253 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | PeerJ Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-87102532022-01-14 Quantification of antibiotic resistance genes and mobile genetic in dairy manure Wang, Yi Pandey, Pramod Chiu, Colleen Jeannotte, Richard Kuppu, Sundaram Zhang, Ruihong Pereira, Richard Weimer, Bart C. Nitin, Nitin Aly, Sharif S. PeerJ Genetics BACKGROUND: Antibiotic resistance genes (ARGs) are considered to be emerging environmental contaminants of concern potentially posing risks to human and animal health, and this research studied the prevalence of antimicrobial resistance in dairy manure. METHODS: This study is focused on investigating prevalence of ARGs in California dairy farm manure under current common different manure management. A total of 33 manure samples were collected from multiple manure treatment conditions: (1) flushed manure (FM), (2) fresh pile (FP), (3) compost pile (CP), (4) primary lagoon (PL), and (5) secondary lagoon (SL). After DNA extraction, all fecal samples were screened by PCR for the presence of eight ARGs: four sulfonamide ARGs (sulI, sulII, sulIII, sulA), two tetracycline ARGs (tetW, tetO), two macrolide-lincosamide-streptogramin B (MLS(B)) ARGs (ermB, ermF). Samples were also screened for two mobile genetic elements (MGEs) (intI1, tnpA), which are responsible for dissemination of ARGs. Quantitative PCR was then used to screen all samples for five ARGs (sulII, tetW, ermF, tnpA and intI1). RESULTS: Prevalence of genes varied among sample types, but all genes were detectable in different manure types. Results showed that liquid-solid separation, piling, and lagoon conditions had limited effects on reducing ARGs and MGEs, and the effect was only found significant on tetW (p = 0.01). Besides, network analysis indicated that sulII was associated with tnpA (p < 0.05), and Psychrobacter and Pseudomonas as opportunistic human pathogens, were potential ARG/MGE hosts (p < 0.05). This research indicated current different manure management practices in California dairy farms has limited effects on reducing ARGs and MGEs. Improvement of different manure management in dairy farms is thus important to mitigate dissemination of ARGs into the environment. PeerJ Inc. 2021-12-23 /pmc/articles/PMC8710253/ /pubmed/35036113 http://dx.doi.org/10.7717/peerj.12408 Text en © 2021 Wang et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. |
spellingShingle | Genetics Wang, Yi Pandey, Pramod Chiu, Colleen Jeannotte, Richard Kuppu, Sundaram Zhang, Ruihong Pereira, Richard Weimer, Bart C. Nitin, Nitin Aly, Sharif S. Quantification of antibiotic resistance genes and mobile genetic in dairy manure |
title | Quantification of antibiotic resistance genes and mobile genetic in dairy manure |
title_full | Quantification of antibiotic resistance genes and mobile genetic in dairy manure |
title_fullStr | Quantification of antibiotic resistance genes and mobile genetic in dairy manure |
title_full_unstemmed | Quantification of antibiotic resistance genes and mobile genetic in dairy manure |
title_short | Quantification of antibiotic resistance genes and mobile genetic in dairy manure |
title_sort | quantification of antibiotic resistance genes and mobile genetic in dairy manure |
topic | Genetics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8710253/ https://www.ncbi.nlm.nih.gov/pubmed/35036113 http://dx.doi.org/10.7717/peerj.12408 |
work_keys_str_mv | AT wangyi quantificationofantibioticresistancegenesandmobilegeneticindairymanure AT pandeypramod quantificationofantibioticresistancegenesandmobilegeneticindairymanure AT chiucolleen quantificationofantibioticresistancegenesandmobilegeneticindairymanure AT jeannotterichard quantificationofantibioticresistancegenesandmobilegeneticindairymanure AT kuppusundaram quantificationofantibioticresistancegenesandmobilegeneticindairymanure AT zhangruihong quantificationofantibioticresistancegenesandmobilegeneticindairymanure AT pereirarichard quantificationofantibioticresistancegenesandmobilegeneticindairymanure AT weimerbartc quantificationofantibioticresistancegenesandmobilegeneticindairymanure AT nitinnitin quantificationofantibioticresistancegenesandmobilegeneticindairymanure AT alysharifs quantificationofantibioticresistancegenesandmobilegeneticindairymanure |