Cargando…
Self-Assembly of [3]Catenane and [4]Catenane Based on Neutral Organometallic Scaffolds
Transition metal-mediated templating and self-assembly have shown great potential to construct mechanically interlocked molecules. Herein, we describe the formation of the bimetallic [3]catenane and [4]catenane based on neutral organometallic scaffolds via the orthogonality of platinum-to-oxygen coo...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8710481/ https://www.ncbi.nlm.nih.gov/pubmed/34966723 http://dx.doi.org/10.3389/fchem.2021.805229 |
Sumario: | Transition metal-mediated templating and self-assembly have shown great potential to construct mechanically interlocked molecules. Herein, we describe the formation of the bimetallic [3]catenane and [4]catenane based on neutral organometallic scaffolds via the orthogonality of platinum-to-oxygen coordination-driven self-assembly and copper(I) template–directed strategy of a [2]pseudorotaxane. The structures of these bimetallic [3]catenane and [4]catenane were characterized by multinuclear NMR {(1)H and (31)P} spectroscopy, electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS), and PM6 semiempirical molecular orbital theoretical calculations. In addition, single-crystal X-ray analyses of the [3]catenane revealed two asymmetric [2]pseudorotaxane units inside the metallacycle. It was discovered that tubular structures were formed through the stacking of individual [3]catenane molecules driven by the strong π–π interactions. |
---|