Cargando…
Predicting Pseudogene–miRNA Associations Based on Feature Fusion and Graph Auto-Encoder
Pseudogenes were originally regarded as non-functional components scattered in the genome during evolution. Recent studies have shown that pseudogenes can be transcribed into long non-coding RNA and play a key role at multiple functional levels in different physiological and pathological processes....
Autores principales: | Zhou, Shijia, Sun, Weicheng, Zhang, Ping, Li, Li |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8710693/ https://www.ncbi.nlm.nih.gov/pubmed/34966413 http://dx.doi.org/10.3389/fgene.2021.781277 |
Ejemplares similares
-
Predicting lncRNA-miRNA Interaction via Graph Convolution Auto-Encoder
por: Huang, Yu-An, et al.
Publicado: (2019) -
Predicting miRNA-Disease Associations Based on Heterogeneous Graph Attention Networks
por: Ji, Cunmei, et al.
Publicado: (2021) -
GCNCMI: A Graph Convolutional Neural Network Approach for Predicting circRNA-miRNA Interactions
por: He, Jie, et al.
Publicado: (2022) -
Predicting miRNA-disease associations based on multi-view information fusion
por: Xie, Xuping, et al.
Publicado: (2022) -
Identification of miRNA-Small Molecule Associations by Continuous Feature Representation Using Auto-Encoders
por: Abdelbaky, Ibrahim, et al.
Publicado: (2021)