Cargando…
Investigating the impact of development and internal validation design when training prognostic models using a retrospective cohort in big US observational healthcare data
OBJECTIVE: The internal validation of prediction models aims to quantify the generalisability of a model. We aim to determine the impact, if any, that the choice of development and internal validation design has on the internal performance bias and model generalisability in big data (n~500 000). DES...
Autores principales: | Reps, Jenna M, Ryan, Patrick, Rijnbeek, P R |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8710861/ https://www.ncbi.nlm.nih.gov/pubmed/34952871 http://dx.doi.org/10.1136/bmjopen-2021-050146 |
Ejemplares similares
-
Transforming the Premier Perspective® Hospital Database into the Observational Medical Outcomes Partnership (OMOP) Common Data Model
por: Makadia, Rupa, et al.
Publicado: (2014) -
VariantValidator: Accurate validation, mapping, and formatting of sequence variation descriptions
por: Freeman, Peter J., et al.
Publicado: (2017) -
An empirical analysis of dealing with patients who are lost to follow-up when developing prognostic models using a cohort design
por: Reps, Jenna M., et al.
Publicado: (2021) -
The impact of GeneMatcher on international data sharing and collaboration
por: Hamosh, Ada, et al.
Publicado: (2022) -
Design and implementation of a standardized framework to generate and evaluate patient-level prediction models using observational healthcare data
por: Reps, Jenna M, et al.
Publicado: (2018)