Cargando…

The evolution of quantitative sensitivity

The ability to represent approximate quantities appears to be phylogenetically widespread, but the selective pressures and proximate mechanisms favouring this ability remain unknown. We analysed quantity discrimination data from 672 subjects across 33 bird and mammal species, using a novel Bayesian...

Descripción completa

Detalles Bibliográficos
Autores principales: Bryer, Margaret A. H., Koopman, Sarah E., Cantlon, Jessica F., Piantadosi, Steven T., MacLean, Evan L., Baker, Joseph M., Beran, Michael J., Jones, Sarah M., Jordan, Kerry E., Mahamane, Salif, Nieder, Andreas, Perdue, Bonnie M., Range, Friederike, Stevens, Jeffrey R., Tomonaga, Masaki, Ujfalussy, Dorottya J., Vonk, Jennifer
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8710878/
https://www.ncbi.nlm.nih.gov/pubmed/34957840
http://dx.doi.org/10.1098/rstb.2020.0529
_version_ 1784623259257405440
author Bryer, Margaret A. H.
Koopman, Sarah E.
Cantlon, Jessica F.
Piantadosi, Steven T.
MacLean, Evan L.
Baker, Joseph M.
Beran, Michael J.
Jones, Sarah M.
Jordan, Kerry E.
Mahamane, Salif
Nieder, Andreas
Perdue, Bonnie M.
Range, Friederike
Stevens, Jeffrey R.
Tomonaga, Masaki
Ujfalussy, Dorottya J.
Vonk, Jennifer
author_facet Bryer, Margaret A. H.
Koopman, Sarah E.
Cantlon, Jessica F.
Piantadosi, Steven T.
MacLean, Evan L.
Baker, Joseph M.
Beran, Michael J.
Jones, Sarah M.
Jordan, Kerry E.
Mahamane, Salif
Nieder, Andreas
Perdue, Bonnie M.
Range, Friederike
Stevens, Jeffrey R.
Tomonaga, Masaki
Ujfalussy, Dorottya J.
Vonk, Jennifer
author_sort Bryer, Margaret A. H.
collection PubMed
description The ability to represent approximate quantities appears to be phylogenetically widespread, but the selective pressures and proximate mechanisms favouring this ability remain unknown. We analysed quantity discrimination data from 672 subjects across 33 bird and mammal species, using a novel Bayesian model that combined phylogenetic regression with a model of number psychophysics and random effect components. This allowed us to combine data from 49 studies and calculate the Weber fraction (a measure of quantity representation precision) for each species. We then examined which cognitive, socioecological and biological factors were related to variance in Weber fraction. We found contributions of phylogeny to quantity discrimination performance across taxa. Of the neural, socioecological and general cognitive factors we tested, cortical neuron density and domain-general cognition were the strongest predictors of Weber fraction, controlling for phylogeny. Our study is a new demonstration of evolutionary constraints on cognition, as well as of a relation between species-specific neuron density and a particular cognitive ability. This article is part of the theme issue ‘Systems neuroscience through the lens of evolutionary theory’.
format Online
Article
Text
id pubmed-8710878
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher The Royal Society
record_format MEDLINE/PubMed
spelling pubmed-87108782022-01-18 The evolution of quantitative sensitivity Bryer, Margaret A. H. Koopman, Sarah E. Cantlon, Jessica F. Piantadosi, Steven T. MacLean, Evan L. Baker, Joseph M. Beran, Michael J. Jones, Sarah M. Jordan, Kerry E. Mahamane, Salif Nieder, Andreas Perdue, Bonnie M. Range, Friederike Stevens, Jeffrey R. Tomonaga, Masaki Ujfalussy, Dorottya J. Vonk, Jennifer Philos Trans R Soc Lond B Biol Sci Articles The ability to represent approximate quantities appears to be phylogenetically widespread, but the selective pressures and proximate mechanisms favouring this ability remain unknown. We analysed quantity discrimination data from 672 subjects across 33 bird and mammal species, using a novel Bayesian model that combined phylogenetic regression with a model of number psychophysics and random effect components. This allowed us to combine data from 49 studies and calculate the Weber fraction (a measure of quantity representation precision) for each species. We then examined which cognitive, socioecological and biological factors were related to variance in Weber fraction. We found contributions of phylogeny to quantity discrimination performance across taxa. Of the neural, socioecological and general cognitive factors we tested, cortical neuron density and domain-general cognition were the strongest predictors of Weber fraction, controlling for phylogeny. Our study is a new demonstration of evolutionary constraints on cognition, as well as of a relation between species-specific neuron density and a particular cognitive ability. This article is part of the theme issue ‘Systems neuroscience through the lens of evolutionary theory’. The Royal Society 2022-02-14 2021-12-27 /pmc/articles/PMC8710878/ /pubmed/34957840 http://dx.doi.org/10.1098/rstb.2020.0529 Text en © 2021 The Authors. https://creativecommons.org/licenses/by/4.0/Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, provided the original author and source are credited.
spellingShingle Articles
Bryer, Margaret A. H.
Koopman, Sarah E.
Cantlon, Jessica F.
Piantadosi, Steven T.
MacLean, Evan L.
Baker, Joseph M.
Beran, Michael J.
Jones, Sarah M.
Jordan, Kerry E.
Mahamane, Salif
Nieder, Andreas
Perdue, Bonnie M.
Range, Friederike
Stevens, Jeffrey R.
Tomonaga, Masaki
Ujfalussy, Dorottya J.
Vonk, Jennifer
The evolution of quantitative sensitivity
title The evolution of quantitative sensitivity
title_full The evolution of quantitative sensitivity
title_fullStr The evolution of quantitative sensitivity
title_full_unstemmed The evolution of quantitative sensitivity
title_short The evolution of quantitative sensitivity
title_sort evolution of quantitative sensitivity
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8710878/
https://www.ncbi.nlm.nih.gov/pubmed/34957840
http://dx.doi.org/10.1098/rstb.2020.0529
work_keys_str_mv AT bryermargaretah theevolutionofquantitativesensitivity
AT koopmansarahe theevolutionofquantitativesensitivity
AT cantlonjessicaf theevolutionofquantitativesensitivity
AT piantadosistevent theevolutionofquantitativesensitivity
AT macleanevanl theevolutionofquantitativesensitivity
AT bakerjosephm theevolutionofquantitativesensitivity
AT beranmichaelj theevolutionofquantitativesensitivity
AT jonessarahm theevolutionofquantitativesensitivity
AT jordankerrye theevolutionofquantitativesensitivity
AT mahamanesalif theevolutionofquantitativesensitivity
AT niederandreas theevolutionofquantitativesensitivity
AT perduebonniem theevolutionofquantitativesensitivity
AT rangefriederike theevolutionofquantitativesensitivity
AT stevensjeffreyr theevolutionofquantitativesensitivity
AT tomonagamasaki theevolutionofquantitativesensitivity
AT ujfalussydorottyaj theevolutionofquantitativesensitivity
AT vonkjennifer theevolutionofquantitativesensitivity
AT bryermargaretah evolutionofquantitativesensitivity
AT koopmansarahe evolutionofquantitativesensitivity
AT cantlonjessicaf evolutionofquantitativesensitivity
AT piantadosistevent evolutionofquantitativesensitivity
AT macleanevanl evolutionofquantitativesensitivity
AT bakerjosephm evolutionofquantitativesensitivity
AT beranmichaelj evolutionofquantitativesensitivity
AT jonessarahm evolutionofquantitativesensitivity
AT jordankerrye evolutionofquantitativesensitivity
AT mahamanesalif evolutionofquantitativesensitivity
AT niederandreas evolutionofquantitativesensitivity
AT perduebonniem evolutionofquantitativesensitivity
AT rangefriederike evolutionofquantitativesensitivity
AT stevensjeffreyr evolutionofquantitativesensitivity
AT tomonagamasaki evolutionofquantitativesensitivity
AT ujfalussydorottyaj evolutionofquantitativesensitivity
AT vonkjennifer evolutionofquantitativesensitivity