Cargando…
The evolution of quantitative sensitivity
The ability to represent approximate quantities appears to be phylogenetically widespread, but the selective pressures and proximate mechanisms favouring this ability remain unknown. We analysed quantity discrimination data from 672 subjects across 33 bird and mammal species, using a novel Bayesian...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8710878/ https://www.ncbi.nlm.nih.gov/pubmed/34957840 http://dx.doi.org/10.1098/rstb.2020.0529 |
_version_ | 1784623259257405440 |
---|---|
author | Bryer, Margaret A. H. Koopman, Sarah E. Cantlon, Jessica F. Piantadosi, Steven T. MacLean, Evan L. Baker, Joseph M. Beran, Michael J. Jones, Sarah M. Jordan, Kerry E. Mahamane, Salif Nieder, Andreas Perdue, Bonnie M. Range, Friederike Stevens, Jeffrey R. Tomonaga, Masaki Ujfalussy, Dorottya J. Vonk, Jennifer |
author_facet | Bryer, Margaret A. H. Koopman, Sarah E. Cantlon, Jessica F. Piantadosi, Steven T. MacLean, Evan L. Baker, Joseph M. Beran, Michael J. Jones, Sarah M. Jordan, Kerry E. Mahamane, Salif Nieder, Andreas Perdue, Bonnie M. Range, Friederike Stevens, Jeffrey R. Tomonaga, Masaki Ujfalussy, Dorottya J. Vonk, Jennifer |
author_sort | Bryer, Margaret A. H. |
collection | PubMed |
description | The ability to represent approximate quantities appears to be phylogenetically widespread, but the selective pressures and proximate mechanisms favouring this ability remain unknown. We analysed quantity discrimination data from 672 subjects across 33 bird and mammal species, using a novel Bayesian model that combined phylogenetic regression with a model of number psychophysics and random effect components. This allowed us to combine data from 49 studies and calculate the Weber fraction (a measure of quantity representation precision) for each species. We then examined which cognitive, socioecological and biological factors were related to variance in Weber fraction. We found contributions of phylogeny to quantity discrimination performance across taxa. Of the neural, socioecological and general cognitive factors we tested, cortical neuron density and domain-general cognition were the strongest predictors of Weber fraction, controlling for phylogeny. Our study is a new demonstration of evolutionary constraints on cognition, as well as of a relation between species-specific neuron density and a particular cognitive ability. This article is part of the theme issue ‘Systems neuroscience through the lens of evolutionary theory’. |
format | Online Article Text |
id | pubmed-8710878 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | The Royal Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-87108782022-01-18 The evolution of quantitative sensitivity Bryer, Margaret A. H. Koopman, Sarah E. Cantlon, Jessica F. Piantadosi, Steven T. MacLean, Evan L. Baker, Joseph M. Beran, Michael J. Jones, Sarah M. Jordan, Kerry E. Mahamane, Salif Nieder, Andreas Perdue, Bonnie M. Range, Friederike Stevens, Jeffrey R. Tomonaga, Masaki Ujfalussy, Dorottya J. Vonk, Jennifer Philos Trans R Soc Lond B Biol Sci Articles The ability to represent approximate quantities appears to be phylogenetically widespread, but the selective pressures and proximate mechanisms favouring this ability remain unknown. We analysed quantity discrimination data from 672 subjects across 33 bird and mammal species, using a novel Bayesian model that combined phylogenetic regression with a model of number psychophysics and random effect components. This allowed us to combine data from 49 studies and calculate the Weber fraction (a measure of quantity representation precision) for each species. We then examined which cognitive, socioecological and biological factors were related to variance in Weber fraction. We found contributions of phylogeny to quantity discrimination performance across taxa. Of the neural, socioecological and general cognitive factors we tested, cortical neuron density and domain-general cognition were the strongest predictors of Weber fraction, controlling for phylogeny. Our study is a new demonstration of evolutionary constraints on cognition, as well as of a relation between species-specific neuron density and a particular cognitive ability. This article is part of the theme issue ‘Systems neuroscience through the lens of evolutionary theory’. The Royal Society 2022-02-14 2021-12-27 /pmc/articles/PMC8710878/ /pubmed/34957840 http://dx.doi.org/10.1098/rstb.2020.0529 Text en © 2021 The Authors. https://creativecommons.org/licenses/by/4.0/Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, provided the original author and source are credited. |
spellingShingle | Articles Bryer, Margaret A. H. Koopman, Sarah E. Cantlon, Jessica F. Piantadosi, Steven T. MacLean, Evan L. Baker, Joseph M. Beran, Michael J. Jones, Sarah M. Jordan, Kerry E. Mahamane, Salif Nieder, Andreas Perdue, Bonnie M. Range, Friederike Stevens, Jeffrey R. Tomonaga, Masaki Ujfalussy, Dorottya J. Vonk, Jennifer The evolution of quantitative sensitivity |
title | The evolution of quantitative sensitivity |
title_full | The evolution of quantitative sensitivity |
title_fullStr | The evolution of quantitative sensitivity |
title_full_unstemmed | The evolution of quantitative sensitivity |
title_short | The evolution of quantitative sensitivity |
title_sort | evolution of quantitative sensitivity |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8710878/ https://www.ncbi.nlm.nih.gov/pubmed/34957840 http://dx.doi.org/10.1098/rstb.2020.0529 |
work_keys_str_mv | AT bryermargaretah theevolutionofquantitativesensitivity AT koopmansarahe theevolutionofquantitativesensitivity AT cantlonjessicaf theevolutionofquantitativesensitivity AT piantadosistevent theevolutionofquantitativesensitivity AT macleanevanl theevolutionofquantitativesensitivity AT bakerjosephm theevolutionofquantitativesensitivity AT beranmichaelj theevolutionofquantitativesensitivity AT jonessarahm theevolutionofquantitativesensitivity AT jordankerrye theevolutionofquantitativesensitivity AT mahamanesalif theevolutionofquantitativesensitivity AT niederandreas theevolutionofquantitativesensitivity AT perduebonniem theevolutionofquantitativesensitivity AT rangefriederike theevolutionofquantitativesensitivity AT stevensjeffreyr theevolutionofquantitativesensitivity AT tomonagamasaki theevolutionofquantitativesensitivity AT ujfalussydorottyaj theevolutionofquantitativesensitivity AT vonkjennifer theevolutionofquantitativesensitivity AT bryermargaretah evolutionofquantitativesensitivity AT koopmansarahe evolutionofquantitativesensitivity AT cantlonjessicaf evolutionofquantitativesensitivity AT piantadosistevent evolutionofquantitativesensitivity AT macleanevanl evolutionofquantitativesensitivity AT bakerjosephm evolutionofquantitativesensitivity AT beranmichaelj evolutionofquantitativesensitivity AT jonessarahm evolutionofquantitativesensitivity AT jordankerrye evolutionofquantitativesensitivity AT mahamanesalif evolutionofquantitativesensitivity AT niederandreas evolutionofquantitativesensitivity AT perduebonniem evolutionofquantitativesensitivity AT rangefriederike evolutionofquantitativesensitivity AT stevensjeffreyr evolutionofquantitativesensitivity AT tomonagamasaki evolutionofquantitativesensitivity AT ujfalussydorottyaj evolutionofquantitativesensitivity AT vonkjennifer evolutionofquantitativesensitivity |