Cargando…
Predictors for extubation failure in COVID-19 patients using a machine learning approach
INTRODUCTION: Determining the optimal timing for extubation can be challenging in the intensive care. In this study, we aim to identify predictors for extubation failure in critically ill patients with COVID-19. METHODS: We used highly granular data from 3464 adult critically ill COVID patients in t...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8711075/ https://www.ncbi.nlm.nih.gov/pubmed/34961537 http://dx.doi.org/10.1186/s13054-021-03864-3 |
_version_ | 1784623301679644672 |
---|---|
author | Fleuren, Lucas M. Dam, Tariq A. Tonutti, Michele de Bruin, Daan P. Lalisang, Robbert C. A. Gommers, Diederik Cremer, Olaf L. Bosman, Rob J. Rigter, Sander Wils, Evert-Jan Frenzel, Tim Dongelmans, Dave A. de Jong, Remko Peters, Marco Kamps, Marlijn J. A. Ramnarain, Dharmanand Nowitzky, Ralph Nooteboom, Fleur G. C. A. de Ruijter, Wouter Urlings-Strop, Louise C. Smit, Ellen G. M. Mehagnoul-Schipper, D. Jannet Dormans, Tom de Jager, Cornelis P. C. Hendriks, Stefaan H. A. Achterberg, Sefanja Oostdijk, Evelien Reidinga, Auke C. Festen-Spanjer, Barbara Brunnekreef, Gert B. Cornet, Alexander D. van den Tempel, Walter Boelens, Age D. Koetsier, Peter Lens, Judith Faber, Harald J. Karakus, A. Entjes, Robert de Jong, Paul Rettig, Thijs C. D. Arbous, Sesmu Vonk, Sebastiaan J. J. Fornasa, Mattia Machado, Tomas Houwert, Taco Hovenkamp, Hidde Noorduijn Londono, Roberto Quintarelli, Davide Scholtemeijer, Martijn G. de Beer, Aletta A. Cinà, Giovanni Kantorik, Adam de Ruijter, Tom Herter, Willem E. Beudel, Martijn Girbes, Armand R. J. Hoogendoorn, Mark Thoral, Patrick J. Elbers, Paul W. G. |
author_facet | Fleuren, Lucas M. Dam, Tariq A. Tonutti, Michele de Bruin, Daan P. Lalisang, Robbert C. A. Gommers, Diederik Cremer, Olaf L. Bosman, Rob J. Rigter, Sander Wils, Evert-Jan Frenzel, Tim Dongelmans, Dave A. de Jong, Remko Peters, Marco Kamps, Marlijn J. A. Ramnarain, Dharmanand Nowitzky, Ralph Nooteboom, Fleur G. C. A. de Ruijter, Wouter Urlings-Strop, Louise C. Smit, Ellen G. M. Mehagnoul-Schipper, D. Jannet Dormans, Tom de Jager, Cornelis P. C. Hendriks, Stefaan H. A. Achterberg, Sefanja Oostdijk, Evelien Reidinga, Auke C. Festen-Spanjer, Barbara Brunnekreef, Gert B. Cornet, Alexander D. van den Tempel, Walter Boelens, Age D. Koetsier, Peter Lens, Judith Faber, Harald J. Karakus, A. Entjes, Robert de Jong, Paul Rettig, Thijs C. D. Arbous, Sesmu Vonk, Sebastiaan J. J. Fornasa, Mattia Machado, Tomas Houwert, Taco Hovenkamp, Hidde Noorduijn Londono, Roberto Quintarelli, Davide Scholtemeijer, Martijn G. de Beer, Aletta A. Cinà, Giovanni Kantorik, Adam de Ruijter, Tom Herter, Willem E. Beudel, Martijn Girbes, Armand R. J. Hoogendoorn, Mark Thoral, Patrick J. Elbers, Paul W. G. |
author_sort | Fleuren, Lucas M. |
collection | PubMed |
description | INTRODUCTION: Determining the optimal timing for extubation can be challenging in the intensive care. In this study, we aim to identify predictors for extubation failure in critically ill patients with COVID-19. METHODS: We used highly granular data from 3464 adult critically ill COVID patients in the multicenter Dutch Data Warehouse, including demographics, clinical observations, medications, fluid balance, laboratory values, vital signs, and data from life support devices. All intubated patients with at least one extubation attempt were eligible for analysis. Transferred patients, patients admitted for less than 24 h, and patients still admitted at the time of data extraction were excluded. Potential predictors were selected by a team of intensive care physicians. The primary and secondary outcomes were extubation without reintubation or death within the next 7 days and within 48 h, respectively. We trained and validated multiple machine learning algorithms using fivefold nested cross-validation. Predictor importance was estimated using Shapley additive explanations, while cutoff values for the relative probability of failed extubation were estimated through partial dependence plots. RESULTS: A total of 883 patients were included in the model derivation. The reintubation rate was 13.4% within 48 h and 18.9% at day 7, with a mortality rate of 0.6% and 1.0% respectively. The grandient-boost model performed best (area under the curve of 0.70) and was used to calculate predictor importance. Ventilatory characteristics and settings were the most important predictors. More specifically, a controlled mode duration longer than 4 days, a last fraction of inspired oxygen higher than 35%, a mean tidal volume per kg ideal body weight above 8 ml/kg in the day before extubation, and a shorter duration in assisted mode (< 2 days) compared to their median values. Additionally, a higher C-reactive protein and leukocyte count, a lower thrombocyte count, a lower Glasgow coma scale and a lower body mass index compared to their medians were associated with extubation failure. CONCLUSION: The most important predictors for extubation failure in critically ill COVID-19 patients include ventilatory settings, inflammatory parameters, neurological status, and body mass index. These predictors should therefore be routinely captured in electronic health records. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13054-021-03864-3. |
format | Online Article Text |
id | pubmed-8711075 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-87110752021-12-27 Predictors for extubation failure in COVID-19 patients using a machine learning approach Fleuren, Lucas M. Dam, Tariq A. Tonutti, Michele de Bruin, Daan P. Lalisang, Robbert C. A. Gommers, Diederik Cremer, Olaf L. Bosman, Rob J. Rigter, Sander Wils, Evert-Jan Frenzel, Tim Dongelmans, Dave A. de Jong, Remko Peters, Marco Kamps, Marlijn J. A. Ramnarain, Dharmanand Nowitzky, Ralph Nooteboom, Fleur G. C. A. de Ruijter, Wouter Urlings-Strop, Louise C. Smit, Ellen G. M. Mehagnoul-Schipper, D. Jannet Dormans, Tom de Jager, Cornelis P. C. Hendriks, Stefaan H. A. Achterberg, Sefanja Oostdijk, Evelien Reidinga, Auke C. Festen-Spanjer, Barbara Brunnekreef, Gert B. Cornet, Alexander D. van den Tempel, Walter Boelens, Age D. Koetsier, Peter Lens, Judith Faber, Harald J. Karakus, A. Entjes, Robert de Jong, Paul Rettig, Thijs C. D. Arbous, Sesmu Vonk, Sebastiaan J. J. Fornasa, Mattia Machado, Tomas Houwert, Taco Hovenkamp, Hidde Noorduijn Londono, Roberto Quintarelli, Davide Scholtemeijer, Martijn G. de Beer, Aletta A. Cinà, Giovanni Kantorik, Adam de Ruijter, Tom Herter, Willem E. Beudel, Martijn Girbes, Armand R. J. Hoogendoorn, Mark Thoral, Patrick J. Elbers, Paul W. G. Crit Care Research INTRODUCTION: Determining the optimal timing for extubation can be challenging in the intensive care. In this study, we aim to identify predictors for extubation failure in critically ill patients with COVID-19. METHODS: We used highly granular data from 3464 adult critically ill COVID patients in the multicenter Dutch Data Warehouse, including demographics, clinical observations, medications, fluid balance, laboratory values, vital signs, and data from life support devices. All intubated patients with at least one extubation attempt were eligible for analysis. Transferred patients, patients admitted for less than 24 h, and patients still admitted at the time of data extraction were excluded. Potential predictors were selected by a team of intensive care physicians. The primary and secondary outcomes were extubation without reintubation or death within the next 7 days and within 48 h, respectively. We trained and validated multiple machine learning algorithms using fivefold nested cross-validation. Predictor importance was estimated using Shapley additive explanations, while cutoff values for the relative probability of failed extubation were estimated through partial dependence plots. RESULTS: A total of 883 patients were included in the model derivation. The reintubation rate was 13.4% within 48 h and 18.9% at day 7, with a mortality rate of 0.6% and 1.0% respectively. The grandient-boost model performed best (area under the curve of 0.70) and was used to calculate predictor importance. Ventilatory characteristics and settings were the most important predictors. More specifically, a controlled mode duration longer than 4 days, a last fraction of inspired oxygen higher than 35%, a mean tidal volume per kg ideal body weight above 8 ml/kg in the day before extubation, and a shorter duration in assisted mode (< 2 days) compared to their median values. Additionally, a higher C-reactive protein and leukocyte count, a lower thrombocyte count, a lower Glasgow coma scale and a lower body mass index compared to their medians were associated with extubation failure. CONCLUSION: The most important predictors for extubation failure in critically ill COVID-19 patients include ventilatory settings, inflammatory parameters, neurological status, and body mass index. These predictors should therefore be routinely captured in electronic health records. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13054-021-03864-3. BioMed Central 2021-12-27 /pmc/articles/PMC8711075/ /pubmed/34961537 http://dx.doi.org/10.1186/s13054-021-03864-3 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Fleuren, Lucas M. Dam, Tariq A. Tonutti, Michele de Bruin, Daan P. Lalisang, Robbert C. A. Gommers, Diederik Cremer, Olaf L. Bosman, Rob J. Rigter, Sander Wils, Evert-Jan Frenzel, Tim Dongelmans, Dave A. de Jong, Remko Peters, Marco Kamps, Marlijn J. A. Ramnarain, Dharmanand Nowitzky, Ralph Nooteboom, Fleur G. C. A. de Ruijter, Wouter Urlings-Strop, Louise C. Smit, Ellen G. M. Mehagnoul-Schipper, D. Jannet Dormans, Tom de Jager, Cornelis P. C. Hendriks, Stefaan H. A. Achterberg, Sefanja Oostdijk, Evelien Reidinga, Auke C. Festen-Spanjer, Barbara Brunnekreef, Gert B. Cornet, Alexander D. van den Tempel, Walter Boelens, Age D. Koetsier, Peter Lens, Judith Faber, Harald J. Karakus, A. Entjes, Robert de Jong, Paul Rettig, Thijs C. D. Arbous, Sesmu Vonk, Sebastiaan J. J. Fornasa, Mattia Machado, Tomas Houwert, Taco Hovenkamp, Hidde Noorduijn Londono, Roberto Quintarelli, Davide Scholtemeijer, Martijn G. de Beer, Aletta A. Cinà, Giovanni Kantorik, Adam de Ruijter, Tom Herter, Willem E. Beudel, Martijn Girbes, Armand R. J. Hoogendoorn, Mark Thoral, Patrick J. Elbers, Paul W. G. Predictors for extubation failure in COVID-19 patients using a machine learning approach |
title | Predictors for extubation failure in COVID-19 patients using a machine learning approach |
title_full | Predictors for extubation failure in COVID-19 patients using a machine learning approach |
title_fullStr | Predictors for extubation failure in COVID-19 patients using a machine learning approach |
title_full_unstemmed | Predictors for extubation failure in COVID-19 patients using a machine learning approach |
title_short | Predictors for extubation failure in COVID-19 patients using a machine learning approach |
title_sort | predictors for extubation failure in covid-19 patients using a machine learning approach |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8711075/ https://www.ncbi.nlm.nih.gov/pubmed/34961537 http://dx.doi.org/10.1186/s13054-021-03864-3 |
work_keys_str_mv | AT fleurenlucasm predictorsforextubationfailureincovid19patientsusingamachinelearningapproach AT damtariqa predictorsforextubationfailureincovid19patientsusingamachinelearningapproach AT tonuttimichele predictorsforextubationfailureincovid19patientsusingamachinelearningapproach AT debruindaanp predictorsforextubationfailureincovid19patientsusingamachinelearningapproach AT lalisangrobbertca predictorsforextubationfailureincovid19patientsusingamachinelearningapproach AT gommersdiederik predictorsforextubationfailureincovid19patientsusingamachinelearningapproach AT cremerolafl predictorsforextubationfailureincovid19patientsusingamachinelearningapproach AT bosmanrobj predictorsforextubationfailureincovid19patientsusingamachinelearningapproach AT rigtersander predictorsforextubationfailureincovid19patientsusingamachinelearningapproach AT wilsevertjan predictorsforextubationfailureincovid19patientsusingamachinelearningapproach AT frenzeltim predictorsforextubationfailureincovid19patientsusingamachinelearningapproach AT dongelmansdavea predictorsforextubationfailureincovid19patientsusingamachinelearningapproach AT dejongremko predictorsforextubationfailureincovid19patientsusingamachinelearningapproach AT petersmarco predictorsforextubationfailureincovid19patientsusingamachinelearningapproach AT kampsmarlijnja predictorsforextubationfailureincovid19patientsusingamachinelearningapproach AT ramnaraindharmanand predictorsforextubationfailureincovid19patientsusingamachinelearningapproach AT nowitzkyralph predictorsforextubationfailureincovid19patientsusingamachinelearningapproach AT nooteboomfleurgca predictorsforextubationfailureincovid19patientsusingamachinelearningapproach AT deruijterwouter predictorsforextubationfailureincovid19patientsusingamachinelearningapproach AT urlingsstroplouisec predictorsforextubationfailureincovid19patientsusingamachinelearningapproach AT smitellengm predictorsforextubationfailureincovid19patientsusingamachinelearningapproach AT mehagnoulschipperdjannet predictorsforextubationfailureincovid19patientsusingamachinelearningapproach AT dormanstom predictorsforextubationfailureincovid19patientsusingamachinelearningapproach AT dejagercornelispc predictorsforextubationfailureincovid19patientsusingamachinelearningapproach AT hendriksstefaanha predictorsforextubationfailureincovid19patientsusingamachinelearningapproach AT achterbergsefanja predictorsforextubationfailureincovid19patientsusingamachinelearningapproach AT oostdijkevelien predictorsforextubationfailureincovid19patientsusingamachinelearningapproach AT reidingaaukec predictorsforextubationfailureincovid19patientsusingamachinelearningapproach AT festenspanjerbarbara predictorsforextubationfailureincovid19patientsusingamachinelearningapproach AT brunnekreefgertb predictorsforextubationfailureincovid19patientsusingamachinelearningapproach AT cornetalexanderd predictorsforextubationfailureincovid19patientsusingamachinelearningapproach AT vandentempelwalter predictorsforextubationfailureincovid19patientsusingamachinelearningapproach AT boelensaged predictorsforextubationfailureincovid19patientsusingamachinelearningapproach AT koetsierpeter predictorsforextubationfailureincovid19patientsusingamachinelearningapproach AT lensjudith predictorsforextubationfailureincovid19patientsusingamachinelearningapproach AT faberharaldj predictorsforextubationfailureincovid19patientsusingamachinelearningapproach AT karakusa predictorsforextubationfailureincovid19patientsusingamachinelearningapproach AT entjesrobert predictorsforextubationfailureincovid19patientsusingamachinelearningapproach AT dejongpaul predictorsforextubationfailureincovid19patientsusingamachinelearningapproach AT rettigthijscd predictorsforextubationfailureincovid19patientsusingamachinelearningapproach AT arboussesmu predictorsforextubationfailureincovid19patientsusingamachinelearningapproach AT vonksebastiaanjj predictorsforextubationfailureincovid19patientsusingamachinelearningapproach AT fornasamattia predictorsforextubationfailureincovid19patientsusingamachinelearningapproach AT machadotomas predictorsforextubationfailureincovid19patientsusingamachinelearningapproach AT houwerttaco predictorsforextubationfailureincovid19patientsusingamachinelearningapproach AT hovenkamphidde predictorsforextubationfailureincovid19patientsusingamachinelearningapproach AT noorduijnlondonoroberto predictorsforextubationfailureincovid19patientsusingamachinelearningapproach AT quintarellidavide predictorsforextubationfailureincovid19patientsusingamachinelearningapproach AT scholtemeijermartijng predictorsforextubationfailureincovid19patientsusingamachinelearningapproach AT debeeralettaa predictorsforextubationfailureincovid19patientsusingamachinelearningapproach AT cinagiovanni predictorsforextubationfailureincovid19patientsusingamachinelearningapproach AT kantorikadam predictorsforextubationfailureincovid19patientsusingamachinelearningapproach AT deruijtertom predictorsforextubationfailureincovid19patientsusingamachinelearningapproach AT herterwilleme predictorsforextubationfailureincovid19patientsusingamachinelearningapproach AT beudelmartijn predictorsforextubationfailureincovid19patientsusingamachinelearningapproach AT girbesarmandrj predictorsforextubationfailureincovid19patientsusingamachinelearningapproach AT hoogendoornmark predictorsforextubationfailureincovid19patientsusingamachinelearningapproach AT thoralpatrickj predictorsforextubationfailureincovid19patientsusingamachinelearningapproach AT elberspaulwg predictorsforextubationfailureincovid19patientsusingamachinelearningapproach AT predictorsforextubationfailureincovid19patientsusingamachinelearningapproach |