Cargando…

Predictors for extubation failure in COVID-19 patients using a machine learning approach

INTRODUCTION: Determining the optimal timing for extubation can be challenging in the intensive care. In this study, we aim to identify predictors for extubation failure in critically ill patients with COVID-19. METHODS: We used highly granular data from 3464 adult critically ill COVID patients in t...

Descripción completa

Detalles Bibliográficos
Autores principales: Fleuren, Lucas M., Dam, Tariq A., Tonutti, Michele, de Bruin, Daan P., Lalisang, Robbert C. A., Gommers, Diederik, Cremer, Olaf L., Bosman, Rob J., Rigter, Sander, Wils, Evert-Jan, Frenzel, Tim, Dongelmans, Dave A., de Jong, Remko, Peters, Marco, Kamps, Marlijn J. A., Ramnarain, Dharmanand, Nowitzky, Ralph, Nooteboom, Fleur G. C. A., de Ruijter, Wouter, Urlings-Strop, Louise C., Smit, Ellen G. M., Mehagnoul-Schipper, D. Jannet, Dormans, Tom, de Jager, Cornelis P. C., Hendriks, Stefaan H. A., Achterberg, Sefanja, Oostdijk, Evelien, Reidinga, Auke C., Festen-Spanjer, Barbara, Brunnekreef, Gert B., Cornet, Alexander D., van den Tempel, Walter, Boelens, Age D., Koetsier, Peter, Lens, Judith, Faber, Harald J., Karakus, A., Entjes, Robert, de Jong, Paul, Rettig, Thijs C. D., Arbous, Sesmu, Vonk, Sebastiaan J. J., Fornasa, Mattia, Machado, Tomas, Houwert, Taco, Hovenkamp, Hidde, Noorduijn Londono, Roberto, Quintarelli, Davide, Scholtemeijer, Martijn G., de Beer, Aletta A., Cinà, Giovanni, Kantorik, Adam, de Ruijter, Tom, Herter, Willem E., Beudel, Martijn, Girbes, Armand R. J., Hoogendoorn, Mark, Thoral, Patrick J., Elbers, Paul W. G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8711075/
https://www.ncbi.nlm.nih.gov/pubmed/34961537
http://dx.doi.org/10.1186/s13054-021-03864-3
_version_ 1784623301679644672
author Fleuren, Lucas M.
Dam, Tariq A.
Tonutti, Michele
de Bruin, Daan P.
Lalisang, Robbert C. A.
Gommers, Diederik
Cremer, Olaf L.
Bosman, Rob J.
Rigter, Sander
Wils, Evert-Jan
Frenzel, Tim
Dongelmans, Dave A.
de Jong, Remko
Peters, Marco
Kamps, Marlijn J. A.
Ramnarain, Dharmanand
Nowitzky, Ralph
Nooteboom, Fleur G. C. A.
de Ruijter, Wouter
Urlings-Strop, Louise C.
Smit, Ellen G. M.
Mehagnoul-Schipper, D. Jannet
Dormans, Tom
de Jager, Cornelis P. C.
Hendriks, Stefaan H. A.
Achterberg, Sefanja
Oostdijk, Evelien
Reidinga, Auke C.
Festen-Spanjer, Barbara
Brunnekreef, Gert B.
Cornet, Alexander D.
van den Tempel, Walter
Boelens, Age D.
Koetsier, Peter
Lens, Judith
Faber, Harald J.
Karakus, A.
Entjes, Robert
de Jong, Paul
Rettig, Thijs C. D.
Arbous, Sesmu
Vonk, Sebastiaan J. J.
Fornasa, Mattia
Machado, Tomas
Houwert, Taco
Hovenkamp, Hidde
Noorduijn Londono, Roberto
Quintarelli, Davide
Scholtemeijer, Martijn G.
de Beer, Aletta A.
Cinà, Giovanni
Kantorik, Adam
de Ruijter, Tom
Herter, Willem E.
Beudel, Martijn
Girbes, Armand R. J.
Hoogendoorn, Mark
Thoral, Patrick J.
Elbers, Paul W. G.
author_facet Fleuren, Lucas M.
Dam, Tariq A.
Tonutti, Michele
de Bruin, Daan P.
Lalisang, Robbert C. A.
Gommers, Diederik
Cremer, Olaf L.
Bosman, Rob J.
Rigter, Sander
Wils, Evert-Jan
Frenzel, Tim
Dongelmans, Dave A.
de Jong, Remko
Peters, Marco
Kamps, Marlijn J. A.
Ramnarain, Dharmanand
Nowitzky, Ralph
Nooteboom, Fleur G. C. A.
de Ruijter, Wouter
Urlings-Strop, Louise C.
Smit, Ellen G. M.
Mehagnoul-Schipper, D. Jannet
Dormans, Tom
de Jager, Cornelis P. C.
Hendriks, Stefaan H. A.
Achterberg, Sefanja
Oostdijk, Evelien
Reidinga, Auke C.
Festen-Spanjer, Barbara
Brunnekreef, Gert B.
Cornet, Alexander D.
van den Tempel, Walter
Boelens, Age D.
Koetsier, Peter
Lens, Judith
Faber, Harald J.
Karakus, A.
Entjes, Robert
de Jong, Paul
Rettig, Thijs C. D.
Arbous, Sesmu
Vonk, Sebastiaan J. J.
Fornasa, Mattia
Machado, Tomas
Houwert, Taco
Hovenkamp, Hidde
Noorduijn Londono, Roberto
Quintarelli, Davide
Scholtemeijer, Martijn G.
de Beer, Aletta A.
Cinà, Giovanni
Kantorik, Adam
de Ruijter, Tom
Herter, Willem E.
Beudel, Martijn
Girbes, Armand R. J.
Hoogendoorn, Mark
Thoral, Patrick J.
Elbers, Paul W. G.
author_sort Fleuren, Lucas M.
collection PubMed
description INTRODUCTION: Determining the optimal timing for extubation can be challenging in the intensive care. In this study, we aim to identify predictors for extubation failure in critically ill patients with COVID-19. METHODS: We used highly granular data from 3464 adult critically ill COVID patients in the multicenter Dutch Data Warehouse, including demographics, clinical observations, medications, fluid balance, laboratory values, vital signs, and data from life support devices. All intubated patients with at least one extubation attempt were eligible for analysis. Transferred patients, patients admitted for less than 24 h, and patients still admitted at the time of data extraction were excluded. Potential predictors were selected by a team of intensive care physicians. The primary and secondary outcomes were extubation without reintubation or death within the next 7 days and within 48 h, respectively. We trained and validated multiple machine learning algorithms using fivefold nested cross-validation. Predictor importance was estimated using Shapley additive explanations, while cutoff values for the relative probability of failed extubation were estimated through partial dependence plots. RESULTS: A total of 883 patients were included in the model derivation. The reintubation rate was 13.4% within 48 h and 18.9% at day 7, with a mortality rate of 0.6% and 1.0% respectively. The grandient-boost model performed best (area under the curve of 0.70) and was used to calculate predictor importance. Ventilatory characteristics and settings were the most important predictors. More specifically, a controlled mode duration longer than 4 days, a last fraction of inspired oxygen higher than 35%, a mean tidal volume per kg ideal body weight above 8 ml/kg in the day before extubation, and a shorter duration in assisted mode (< 2 days) compared to their median values. Additionally, a higher C-reactive protein and leukocyte count, a lower thrombocyte count, a lower Glasgow coma scale and a lower body mass index compared to their medians were associated with extubation failure. CONCLUSION: The most important predictors for extubation failure in critically ill COVID-19 patients include ventilatory settings, inflammatory parameters, neurological status, and body mass index. These predictors should therefore be routinely captured in electronic health records. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13054-021-03864-3.
format Online
Article
Text
id pubmed-8711075
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-87110752021-12-27 Predictors for extubation failure in COVID-19 patients using a machine learning approach Fleuren, Lucas M. Dam, Tariq A. Tonutti, Michele de Bruin, Daan P. Lalisang, Robbert C. A. Gommers, Diederik Cremer, Olaf L. Bosman, Rob J. Rigter, Sander Wils, Evert-Jan Frenzel, Tim Dongelmans, Dave A. de Jong, Remko Peters, Marco Kamps, Marlijn J. A. Ramnarain, Dharmanand Nowitzky, Ralph Nooteboom, Fleur G. C. A. de Ruijter, Wouter Urlings-Strop, Louise C. Smit, Ellen G. M. Mehagnoul-Schipper, D. Jannet Dormans, Tom de Jager, Cornelis P. C. Hendriks, Stefaan H. A. Achterberg, Sefanja Oostdijk, Evelien Reidinga, Auke C. Festen-Spanjer, Barbara Brunnekreef, Gert B. Cornet, Alexander D. van den Tempel, Walter Boelens, Age D. Koetsier, Peter Lens, Judith Faber, Harald J. Karakus, A. Entjes, Robert de Jong, Paul Rettig, Thijs C. D. Arbous, Sesmu Vonk, Sebastiaan J. J. Fornasa, Mattia Machado, Tomas Houwert, Taco Hovenkamp, Hidde Noorduijn Londono, Roberto Quintarelli, Davide Scholtemeijer, Martijn G. de Beer, Aletta A. Cinà, Giovanni Kantorik, Adam de Ruijter, Tom Herter, Willem E. Beudel, Martijn Girbes, Armand R. J. Hoogendoorn, Mark Thoral, Patrick J. Elbers, Paul W. G. Crit Care Research INTRODUCTION: Determining the optimal timing for extubation can be challenging in the intensive care. In this study, we aim to identify predictors for extubation failure in critically ill patients with COVID-19. METHODS: We used highly granular data from 3464 adult critically ill COVID patients in the multicenter Dutch Data Warehouse, including demographics, clinical observations, medications, fluid balance, laboratory values, vital signs, and data from life support devices. All intubated patients with at least one extubation attempt were eligible for analysis. Transferred patients, patients admitted for less than 24 h, and patients still admitted at the time of data extraction were excluded. Potential predictors were selected by a team of intensive care physicians. The primary and secondary outcomes were extubation without reintubation or death within the next 7 days and within 48 h, respectively. We trained and validated multiple machine learning algorithms using fivefold nested cross-validation. Predictor importance was estimated using Shapley additive explanations, while cutoff values for the relative probability of failed extubation were estimated through partial dependence plots. RESULTS: A total of 883 patients were included in the model derivation. The reintubation rate was 13.4% within 48 h and 18.9% at day 7, with a mortality rate of 0.6% and 1.0% respectively. The grandient-boost model performed best (area under the curve of 0.70) and was used to calculate predictor importance. Ventilatory characteristics and settings were the most important predictors. More specifically, a controlled mode duration longer than 4 days, a last fraction of inspired oxygen higher than 35%, a mean tidal volume per kg ideal body weight above 8 ml/kg in the day before extubation, and a shorter duration in assisted mode (< 2 days) compared to their median values. Additionally, a higher C-reactive protein and leukocyte count, a lower thrombocyte count, a lower Glasgow coma scale and a lower body mass index compared to their medians were associated with extubation failure. CONCLUSION: The most important predictors for extubation failure in critically ill COVID-19 patients include ventilatory settings, inflammatory parameters, neurological status, and body mass index. These predictors should therefore be routinely captured in electronic health records. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13054-021-03864-3. BioMed Central 2021-12-27 /pmc/articles/PMC8711075/ /pubmed/34961537 http://dx.doi.org/10.1186/s13054-021-03864-3 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Research
Fleuren, Lucas M.
Dam, Tariq A.
Tonutti, Michele
de Bruin, Daan P.
Lalisang, Robbert C. A.
Gommers, Diederik
Cremer, Olaf L.
Bosman, Rob J.
Rigter, Sander
Wils, Evert-Jan
Frenzel, Tim
Dongelmans, Dave A.
de Jong, Remko
Peters, Marco
Kamps, Marlijn J. A.
Ramnarain, Dharmanand
Nowitzky, Ralph
Nooteboom, Fleur G. C. A.
de Ruijter, Wouter
Urlings-Strop, Louise C.
Smit, Ellen G. M.
Mehagnoul-Schipper, D. Jannet
Dormans, Tom
de Jager, Cornelis P. C.
Hendriks, Stefaan H. A.
Achterberg, Sefanja
Oostdijk, Evelien
Reidinga, Auke C.
Festen-Spanjer, Barbara
Brunnekreef, Gert B.
Cornet, Alexander D.
van den Tempel, Walter
Boelens, Age D.
Koetsier, Peter
Lens, Judith
Faber, Harald J.
Karakus, A.
Entjes, Robert
de Jong, Paul
Rettig, Thijs C. D.
Arbous, Sesmu
Vonk, Sebastiaan J. J.
Fornasa, Mattia
Machado, Tomas
Houwert, Taco
Hovenkamp, Hidde
Noorduijn Londono, Roberto
Quintarelli, Davide
Scholtemeijer, Martijn G.
de Beer, Aletta A.
Cinà, Giovanni
Kantorik, Adam
de Ruijter, Tom
Herter, Willem E.
Beudel, Martijn
Girbes, Armand R. J.
Hoogendoorn, Mark
Thoral, Patrick J.
Elbers, Paul W. G.
Predictors for extubation failure in COVID-19 patients using a machine learning approach
title Predictors for extubation failure in COVID-19 patients using a machine learning approach
title_full Predictors for extubation failure in COVID-19 patients using a machine learning approach
title_fullStr Predictors for extubation failure in COVID-19 patients using a machine learning approach
title_full_unstemmed Predictors for extubation failure in COVID-19 patients using a machine learning approach
title_short Predictors for extubation failure in COVID-19 patients using a machine learning approach
title_sort predictors for extubation failure in covid-19 patients using a machine learning approach
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8711075/
https://www.ncbi.nlm.nih.gov/pubmed/34961537
http://dx.doi.org/10.1186/s13054-021-03864-3
work_keys_str_mv AT fleurenlucasm predictorsforextubationfailureincovid19patientsusingamachinelearningapproach
AT damtariqa predictorsforextubationfailureincovid19patientsusingamachinelearningapproach
AT tonuttimichele predictorsforextubationfailureincovid19patientsusingamachinelearningapproach
AT debruindaanp predictorsforextubationfailureincovid19patientsusingamachinelearningapproach
AT lalisangrobbertca predictorsforextubationfailureincovid19patientsusingamachinelearningapproach
AT gommersdiederik predictorsforextubationfailureincovid19patientsusingamachinelearningapproach
AT cremerolafl predictorsforextubationfailureincovid19patientsusingamachinelearningapproach
AT bosmanrobj predictorsforextubationfailureincovid19patientsusingamachinelearningapproach
AT rigtersander predictorsforextubationfailureincovid19patientsusingamachinelearningapproach
AT wilsevertjan predictorsforextubationfailureincovid19patientsusingamachinelearningapproach
AT frenzeltim predictorsforextubationfailureincovid19patientsusingamachinelearningapproach
AT dongelmansdavea predictorsforextubationfailureincovid19patientsusingamachinelearningapproach
AT dejongremko predictorsforextubationfailureincovid19patientsusingamachinelearningapproach
AT petersmarco predictorsforextubationfailureincovid19patientsusingamachinelearningapproach
AT kampsmarlijnja predictorsforextubationfailureincovid19patientsusingamachinelearningapproach
AT ramnaraindharmanand predictorsforextubationfailureincovid19patientsusingamachinelearningapproach
AT nowitzkyralph predictorsforextubationfailureincovid19patientsusingamachinelearningapproach
AT nooteboomfleurgca predictorsforextubationfailureincovid19patientsusingamachinelearningapproach
AT deruijterwouter predictorsforextubationfailureincovid19patientsusingamachinelearningapproach
AT urlingsstroplouisec predictorsforextubationfailureincovid19patientsusingamachinelearningapproach
AT smitellengm predictorsforextubationfailureincovid19patientsusingamachinelearningapproach
AT mehagnoulschipperdjannet predictorsforextubationfailureincovid19patientsusingamachinelearningapproach
AT dormanstom predictorsforextubationfailureincovid19patientsusingamachinelearningapproach
AT dejagercornelispc predictorsforextubationfailureincovid19patientsusingamachinelearningapproach
AT hendriksstefaanha predictorsforextubationfailureincovid19patientsusingamachinelearningapproach
AT achterbergsefanja predictorsforextubationfailureincovid19patientsusingamachinelearningapproach
AT oostdijkevelien predictorsforextubationfailureincovid19patientsusingamachinelearningapproach
AT reidingaaukec predictorsforextubationfailureincovid19patientsusingamachinelearningapproach
AT festenspanjerbarbara predictorsforextubationfailureincovid19patientsusingamachinelearningapproach
AT brunnekreefgertb predictorsforextubationfailureincovid19patientsusingamachinelearningapproach
AT cornetalexanderd predictorsforextubationfailureincovid19patientsusingamachinelearningapproach
AT vandentempelwalter predictorsforextubationfailureincovid19patientsusingamachinelearningapproach
AT boelensaged predictorsforextubationfailureincovid19patientsusingamachinelearningapproach
AT koetsierpeter predictorsforextubationfailureincovid19patientsusingamachinelearningapproach
AT lensjudith predictorsforextubationfailureincovid19patientsusingamachinelearningapproach
AT faberharaldj predictorsforextubationfailureincovid19patientsusingamachinelearningapproach
AT karakusa predictorsforextubationfailureincovid19patientsusingamachinelearningapproach
AT entjesrobert predictorsforextubationfailureincovid19patientsusingamachinelearningapproach
AT dejongpaul predictorsforextubationfailureincovid19patientsusingamachinelearningapproach
AT rettigthijscd predictorsforextubationfailureincovid19patientsusingamachinelearningapproach
AT arboussesmu predictorsforextubationfailureincovid19patientsusingamachinelearningapproach
AT vonksebastiaanjj predictorsforextubationfailureincovid19patientsusingamachinelearningapproach
AT fornasamattia predictorsforextubationfailureincovid19patientsusingamachinelearningapproach
AT machadotomas predictorsforextubationfailureincovid19patientsusingamachinelearningapproach
AT houwerttaco predictorsforextubationfailureincovid19patientsusingamachinelearningapproach
AT hovenkamphidde predictorsforextubationfailureincovid19patientsusingamachinelearningapproach
AT noorduijnlondonoroberto predictorsforextubationfailureincovid19patientsusingamachinelearningapproach
AT quintarellidavide predictorsforextubationfailureincovid19patientsusingamachinelearningapproach
AT scholtemeijermartijng predictorsforextubationfailureincovid19patientsusingamachinelearningapproach
AT debeeralettaa predictorsforextubationfailureincovid19patientsusingamachinelearningapproach
AT cinagiovanni predictorsforextubationfailureincovid19patientsusingamachinelearningapproach
AT kantorikadam predictorsforextubationfailureincovid19patientsusingamachinelearningapproach
AT deruijtertom predictorsforextubationfailureincovid19patientsusingamachinelearningapproach
AT herterwilleme predictorsforextubationfailureincovid19patientsusingamachinelearningapproach
AT beudelmartijn predictorsforextubationfailureincovid19patientsusingamachinelearningapproach
AT girbesarmandrj predictorsforextubationfailureincovid19patientsusingamachinelearningapproach
AT hoogendoornmark predictorsforextubationfailureincovid19patientsusingamachinelearningapproach
AT thoralpatrickj predictorsforextubationfailureincovid19patientsusingamachinelearningapproach
AT elberspaulwg predictorsforextubationfailureincovid19patientsusingamachinelearningapproach
AT predictorsforextubationfailureincovid19patientsusingamachinelearningapproach