Cargando…
Predicting the naturalistic course in anxiety disorders using clinical and biological markers: a machine learning approach
BACKGROUND: Disease trajectories of patients with anxiety disorders are highly diverse and approximately 60% remain chronically ill. The ability to predict disease course in individual patients would enable personalized management of these patients. This study aimed to predict recovery from anxiety...
Autores principales: | Bokma, Wicher A., Zhutovsky, Paul, Giltay, Erik J., Schoevers, Robert A., Penninx, Brenda W.J.H., van Balkom, Anton L.J.M., Batelaan, Neeltje M., van Wingen, Guido A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cambridge University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8711102/ https://www.ncbi.nlm.nih.gov/pubmed/32524918 http://dx.doi.org/10.1017/S0033291720001658 |
Ejemplares similares
-
Aligning the many definitions of treatment resistance in anxiety disorders: A systematic review
por: Bokma, Wicher A., et al.
Publicado: (2019) -
Anxiety sensitivity, its stability and longitudinal association with severity of anxiety symptoms
por: Hovenkamp-Hermelink, Johanna H. M., et al.
Publicado: (2019) -
Metabolomic profiles discriminating anxiety from depression
por: de Kluiver, Hilde, et al.
Publicado: (2021) -
Barriers to discontinuing antidepressants in patients with depressive and anxiety disorders: a review of the literature and clinical recommendations
por: Scholten, Willemijn, et al.
Publicado: (2020) -
To continue or discontinue antidepressants in anxiety disorders? A dilemma for patients and clinicians
por: Muntingh, Anna, et al.
Publicado: (2021)