Cargando…
Detecting Cognitive Impairment Status Using Keystroke Patterns and Physical Activity Data among the Older Adults: A Machine Learning Approach
Cognitive impairment has a significantly negative impact on global healthcare and the community. Holding a person's cognition and mental retention among older adults is improbable with aging. Early detection of cognitive impairment will decline the most significant impact of extended disease to...
Autores principales: | Hossain, Mohammad Nahid, Uddin, Mohammad Helal, Thapa, K., Al Zubaer, Md Abdullah, Islam, Md Shafiqul, Lee, Jiyun, Park, JongSu, Yang, S.-H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8712156/ https://www.ncbi.nlm.nih.gov/pubmed/34966518 http://dx.doi.org/10.1155/2021/1302989 |
Ejemplares similares
-
A Deep Machine Learning Method for Concurrent and Interleaved Human Activity Recognition
por: Thapa, Keshav, et al.
Publicado: (2020) -
Distinguishability of keystroke dynamic template
por: Sae-Bae, Napa, et al.
Publicado: (2022) -
Associations between smartphone keystroke dynamics and cognition in MS
por: Chen, Michelle H, et al.
Publicado: (2022) -
A Survey of Keystroke Dynamics Biometrics
por: Teh, Pin Shen, et al.
Publicado: (2013) -
Keystroke dynamics in the pre-touchscreen era
por: Ahmad, Nasir, et al.
Publicado: (2013)