Cargando…
Patch individual filter layers in CNNs to harness the spatial homogeneity of neuroimaging data
Convolutional neural networks (CNNs)—as a type of deep learning—have been specifically designed for highly heterogeneous data, such as natural images. Neuroimaging data, however, is comparably homogeneous due to (1) the uniform structure of the brain and (2) additional efforts to spatially normalize...
Autores principales: | Eitel, Fabian, Albrecht, Jan Philipp, Weygandt, Martin, Paul, Friedemann, Ritter, Kerstin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8712523/ https://www.ncbi.nlm.nih.gov/pubmed/34961762 http://dx.doi.org/10.1038/s41598-021-03785-9 |
Ejemplares similares
-
Layer-Wise Relevance Propagation for Explaining Deep Neural Network Decisions in MRI-Based Alzheimer's Disease Classification
por: Böhle, Moritz, et al.
Publicado: (2019) -
Uncovering convolutional neural network decisions for diagnosing multiple sclerosis on conventional MRI using layer-wise relevance propagation
por: Eitel, Fabian, et al.
Publicado: (2019) -
Altered Coupling of Psychological Relaxation and Regional Volume of Brain Reward Areas in Multiple Sclerosis
por: Wakonig, Katharina, et al.
Publicado: (2020) -
Prediction of high and low disease activity in early MS patients
using multiple kernel learning identifies importance of lateral ventricle
intensity
por: Chien, Claudia, et al.
Publicado: (2022) -
Combining CNNs and Markov-like Models for Facial Landmark Detection with Spatial Consistency Estimates
por: Gdoura, Ahmed, et al.
Publicado: (2023)