Cargando…
Machine learning‐based risk prediction of malignant arrhythmia in hospitalized patients with heart failure
AIMS: Predicting the risk of malignant arrhythmias (MA) in hospitalized patients with heart failure (HF) is challenging. Machine learning (ML) can handle a large volume of complex data more effectively than traditional statistical methods. This study explored the feasibility of ML methods for predic...
Autores principales: | Wang, Qi, Li, Bin, Chen, Kangyu, Yu, Fei, Su, Hao, Hu, Kai, Liu, Zhiquan, Wu, Guohong, Yan, Ji, Su, Guohai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8712774/ https://www.ncbi.nlm.nih.gov/pubmed/34585531 http://dx.doi.org/10.1002/ehf2.13627 |
Ejemplares similares
-
Towards Prediction of Heart Arrhythmia Onset Using Machine Learning
por: Kitlas Golińska, Agnieszka, et al.
Publicado: (2020) -
Management of Arrhythmias in Heart Failure
por: Masarone, Daniele, et al.
Publicado: (2017) -
Profiling cardiac arrhythmia and heart failure patients in India: The Pan-arrhythmia and Heart Failure Observational Study
por: Vora, Amit, et al.
Publicado: (2017) -
A nomogram to predict the in‐hospital mortality of patients with congestive heart failure and chronic kidney disease
por: Chen, Jiamin, et al.
Publicado: (2022) -
Genetics and epigenetics of arrhythmia and heart failure
por: Duygu, Burcu, et al.
Publicado: (2013)