Cargando…
Machine Learning Prediction of Cardiac Resynchronisation Therapy Response From Combination of Clinical and Model-Driven Data
Background: Up to 30–50% of chronic heart failure patients who underwent cardiac resynchronization therapy (CRT) do not respond to the treatment. Therefore, patient stratification for CRT and optimization of CRT device settings remain a challenge. Objective: The main goal of our study is to develop...
Autores principales: | Khamzin, Svyatoslav, Dokuchaev, Arsenii, Bazhutina, Anastasia, Chumarnaya, Tatiana, Zubarev, Stepan, Lyubimtseva, Tamara, Lebedeva, Viktoria, Lebedev, Dmitry, Gurev, Viatcheslav, Solovyova, Olga |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8712879/ https://www.ncbi.nlm.nih.gov/pubmed/34970154 http://dx.doi.org/10.3389/fphys.2021.753282 |
Ejemplares similares
-
Combination of personalized computational modeling and machine learning for optimization of left ventricular pacing site in cardiac resynchronization therapy
por: Dokuchaev, Arsenii, et al.
Publicado: (2023) -
Gaussian Process Regressions for Inverse Problems and Parameter Searches in Models of Ventricular Mechanics
por: Di Achille, Paolo, et al.
Publicado: (2018) -
Model order reduction for left ventricular mechanics via congruency training
por: Di Achille, Paolo, et al.
Publicado: (2020) -
Clinical evaluation of the new 12-lead ECG noninvasive epi-endocardial mapping technology
por: Chmelevsky, M, et al.
Publicado: (2023) -
The importance of mechanical conditions in the testing of excitation abnormalities in a population of electro-mechanical models of human ventricular cardiomyocytes
por: Dokuchaev, Arsenii, et al.
Publicado: (2023)