Cargando…

Artificial Intelligence Education Programs for Health Care Professionals: Scoping Review

BACKGROUND: As the adoption of artificial intelligence (AI) in health care increases, it will become increasingly crucial to involve health care professionals (HCPs) in developing, validating, and implementing AI-enabled technologies. However, because of a lack of AI literacy, most HCPs are not adeq...

Descripción completa

Detalles Bibliográficos
Autores principales: Charow, Rebecca, Jeyakumar, Tharshini, Younus, Sarah, Dolatabadi, Elham, Salhia, Mohammad, Al-Mouaswas, Dalia, Anderson, Melanie, Balakumar, Sarmini, Clare, Megan, Dhalla, Azra, Gillan, Caitlin, Haghzare, Shabnam, Jackson, Ethan, Lalani, Nadim, Mattson, Jane, Peteanu, Wanda, Tripp, Tim, Waldorf, Jacqueline, Williams, Spencer, Tavares, Walter, Wiljer, David
Formato: Online Artículo Texto
Lenguaje:English
Publicado: JMIR Publications 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8713099/
https://www.ncbi.nlm.nih.gov/pubmed/34898458
http://dx.doi.org/10.2196/31043
Descripción
Sumario:BACKGROUND: As the adoption of artificial intelligence (AI) in health care increases, it will become increasingly crucial to involve health care professionals (HCPs) in developing, validating, and implementing AI-enabled technologies. However, because of a lack of AI literacy, most HCPs are not adequately prepared for this revolution. This is a significant barrier to adopting and implementing AI that will affect patients. In addition, the limited existing AI education programs face barriers to development and implementation at various levels of medical education. OBJECTIVE: With a view to informing future AI education programs for HCPs, this scoping review aims to provide an overview of the types of current or past AI education programs that pertains to the programs’ curricular content, modes of delivery, critical implementation factors for education delivery, and outcomes used to assess the programs’ effectiveness. METHODS: After the creation of a search strategy and keyword searches, a 2-stage screening process was conducted by 2 independent reviewers to determine study eligibility. When consensus was not reached, the conflict was resolved by consulting a third reviewer. This process consisted of a title and abstract scan and a full-text review. The articles were included if they discussed an actual training program or educational intervention, or a potential training program or educational intervention and the desired content to be covered, focused on AI, and were designed or intended for HCPs (at any stage of their career). RESULTS: Of the 10,094 unique citations scanned, 41 (0.41%) studies relevant to our eligibility criteria were identified. Among the 41 included studies, 10 (24%) described 13 unique programs and 31 (76%) discussed recommended curricular content. The curricular content of the unique programs ranged from AI use, AI interpretation, and cultivating skills to explain results derived from AI algorithms. The curricular topics were categorized into three main domains: cognitive, psychomotor, and affective. CONCLUSIONS: This review provides an overview of the current landscape of AI in medical education and highlights the skills and competencies required by HCPs to effectively use AI in enhancing the quality of care and optimizing patient outcomes. Future education efforts should focus on the development of regulatory strategies, a multidisciplinary approach to curriculum redesign, a competency-based curriculum, and patient-clinician interaction.