Cargando…

Exceptional Low-Temperature CO Oxidation over Noble-Metal-Free Iron-Doped Hollandites: An In-Depth Analysis of the Influence of the Defect Structure on Catalytic Performance

[Image: see text] A family of iron-doped manganese-related hollandites, K(x)Mn(1–y)Fe(y)O(2−δ) (0 ≤ y ≤ 0.15), with high performance in CO oxidation have been prepared. Among them, the most active catalyst, K(0.11)Mn(0.876)Fe(0.123)O(1.80)(OH)(0.09), is able to oxidize more than 50% of CO at room te...

Descripción completa

Detalles Bibliográficos
Autores principales: Gómez-Recio, Isabel, Pan, Huiyan, Azor-Lafarga, Alberto, Ruiz-González, María Luisa, Hernando, María, Parras, Marina, Fernández-Díaz, María Teresa, Delgado, Juan J., Chen, Xiaowei, Jiménez, Daniel Goma, Portehault, David, Sanchez, Clément, Cabero, Mariona, Martínez-Arias, Arturo, González-Calbet, José M., Calvino, José J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8713355/
https://www.ncbi.nlm.nih.gov/pubmed/34976431
http://dx.doi.org/10.1021/acscatal.1c04954
_version_ 1784623752590393344
author Gómez-Recio, Isabel
Pan, Huiyan
Azor-Lafarga, Alberto
Ruiz-González, María Luisa
Hernando, María
Parras, Marina
Fernández-Díaz, María Teresa
Delgado, Juan J.
Chen, Xiaowei
Jiménez, Daniel Goma
Portehault, David
Sanchez, Clément
Cabero, Mariona
Martínez-Arias, Arturo
González-Calbet, José M.
Calvino, José J.
author_facet Gómez-Recio, Isabel
Pan, Huiyan
Azor-Lafarga, Alberto
Ruiz-González, María Luisa
Hernando, María
Parras, Marina
Fernández-Díaz, María Teresa
Delgado, Juan J.
Chen, Xiaowei
Jiménez, Daniel Goma
Portehault, David
Sanchez, Clément
Cabero, Mariona
Martínez-Arias, Arturo
González-Calbet, José M.
Calvino, José J.
author_sort Gómez-Recio, Isabel
collection PubMed
description [Image: see text] A family of iron-doped manganese-related hollandites, K(x)Mn(1–y)Fe(y)O(2−δ) (0 ≤ y ≤ 0.15), with high performance in CO oxidation have been prepared. Among them, the most active catalyst, K(0.11)Mn(0.876)Fe(0.123)O(1.80)(OH)(0.09), is able to oxidize more than 50% of CO at room temperature. Detailed compositional and structural characterization studies, using a wide battery of thermogravimetric, spectroscopic, and diffractometric techniques, both at macroscopic and microscopic levels, have provided essential information about this never-reported behavior, which relates to the oxidation state of manganese. Neutron diffraction studies evidence that the above compound stabilizes hydroxyl groups at the midpoints of the tunnel edges as in isostructural β-FeOOH. The presence of oxygen and hydroxyl species at the anion sublattice and Mn(3+), confirmed by electron energy loss spectroscopy, appears to play a key role in the catalytic activity of this doped hollandite oxide. The analysis of these detailed structural features has allowed us to point out the key role of both OH groups and Mn(3+) content in these materials, which are able to effectively transform CO without involving any critical, noble metal in the catalyst formulation.
format Online
Article
Text
id pubmed-8713355
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-87133552021-12-29 Exceptional Low-Temperature CO Oxidation over Noble-Metal-Free Iron-Doped Hollandites: An In-Depth Analysis of the Influence of the Defect Structure on Catalytic Performance Gómez-Recio, Isabel Pan, Huiyan Azor-Lafarga, Alberto Ruiz-González, María Luisa Hernando, María Parras, Marina Fernández-Díaz, María Teresa Delgado, Juan J. Chen, Xiaowei Jiménez, Daniel Goma Portehault, David Sanchez, Clément Cabero, Mariona Martínez-Arias, Arturo González-Calbet, José M. Calvino, José J. ACS Catal [Image: see text] A family of iron-doped manganese-related hollandites, K(x)Mn(1–y)Fe(y)O(2−δ) (0 ≤ y ≤ 0.15), with high performance in CO oxidation have been prepared. Among them, the most active catalyst, K(0.11)Mn(0.876)Fe(0.123)O(1.80)(OH)(0.09), is able to oxidize more than 50% of CO at room temperature. Detailed compositional and structural characterization studies, using a wide battery of thermogravimetric, spectroscopic, and diffractometric techniques, both at macroscopic and microscopic levels, have provided essential information about this never-reported behavior, which relates to the oxidation state of manganese. Neutron diffraction studies evidence that the above compound stabilizes hydroxyl groups at the midpoints of the tunnel edges as in isostructural β-FeOOH. The presence of oxygen and hydroxyl species at the anion sublattice and Mn(3+), confirmed by electron energy loss spectroscopy, appears to play a key role in the catalytic activity of this doped hollandite oxide. The analysis of these detailed structural features has allowed us to point out the key role of both OH groups and Mn(3+) content in these materials, which are able to effectively transform CO without involving any critical, noble metal in the catalyst formulation. American Chemical Society 2021-12-01 2021-12-17 /pmc/articles/PMC8713355/ /pubmed/34976431 http://dx.doi.org/10.1021/acscatal.1c04954 Text en © 2021 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Gómez-Recio, Isabel
Pan, Huiyan
Azor-Lafarga, Alberto
Ruiz-González, María Luisa
Hernando, María
Parras, Marina
Fernández-Díaz, María Teresa
Delgado, Juan J.
Chen, Xiaowei
Jiménez, Daniel Goma
Portehault, David
Sanchez, Clément
Cabero, Mariona
Martínez-Arias, Arturo
González-Calbet, José M.
Calvino, José J.
Exceptional Low-Temperature CO Oxidation over Noble-Metal-Free Iron-Doped Hollandites: An In-Depth Analysis of the Influence of the Defect Structure on Catalytic Performance
title Exceptional Low-Temperature CO Oxidation over Noble-Metal-Free Iron-Doped Hollandites: An In-Depth Analysis of the Influence of the Defect Structure on Catalytic Performance
title_full Exceptional Low-Temperature CO Oxidation over Noble-Metal-Free Iron-Doped Hollandites: An In-Depth Analysis of the Influence of the Defect Structure on Catalytic Performance
title_fullStr Exceptional Low-Temperature CO Oxidation over Noble-Metal-Free Iron-Doped Hollandites: An In-Depth Analysis of the Influence of the Defect Structure on Catalytic Performance
title_full_unstemmed Exceptional Low-Temperature CO Oxidation over Noble-Metal-Free Iron-Doped Hollandites: An In-Depth Analysis of the Influence of the Defect Structure on Catalytic Performance
title_short Exceptional Low-Temperature CO Oxidation over Noble-Metal-Free Iron-Doped Hollandites: An In-Depth Analysis of the Influence of the Defect Structure on Catalytic Performance
title_sort exceptional low-temperature co oxidation over noble-metal-free iron-doped hollandites: an in-depth analysis of the influence of the defect structure on catalytic performance
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8713355/
https://www.ncbi.nlm.nih.gov/pubmed/34976431
http://dx.doi.org/10.1021/acscatal.1c04954
work_keys_str_mv AT gomezrecioisabel exceptionallowtemperaturecooxidationovernoblemetalfreeirondopedhollanditesanindepthanalysisoftheinfluenceofthedefectstructureoncatalyticperformance
AT panhuiyan exceptionallowtemperaturecooxidationovernoblemetalfreeirondopedhollanditesanindepthanalysisoftheinfluenceofthedefectstructureoncatalyticperformance
AT azorlafargaalberto exceptionallowtemperaturecooxidationovernoblemetalfreeirondopedhollanditesanindepthanalysisoftheinfluenceofthedefectstructureoncatalyticperformance
AT ruizgonzalezmarialuisa exceptionallowtemperaturecooxidationovernoblemetalfreeirondopedhollanditesanindepthanalysisoftheinfluenceofthedefectstructureoncatalyticperformance
AT hernandomaria exceptionallowtemperaturecooxidationovernoblemetalfreeirondopedhollanditesanindepthanalysisoftheinfluenceofthedefectstructureoncatalyticperformance
AT parrasmarina exceptionallowtemperaturecooxidationovernoblemetalfreeirondopedhollanditesanindepthanalysisoftheinfluenceofthedefectstructureoncatalyticperformance
AT fernandezdiazmariateresa exceptionallowtemperaturecooxidationovernoblemetalfreeirondopedhollanditesanindepthanalysisoftheinfluenceofthedefectstructureoncatalyticperformance
AT delgadojuanj exceptionallowtemperaturecooxidationovernoblemetalfreeirondopedhollanditesanindepthanalysisoftheinfluenceofthedefectstructureoncatalyticperformance
AT chenxiaowei exceptionallowtemperaturecooxidationovernoblemetalfreeirondopedhollanditesanindepthanalysisoftheinfluenceofthedefectstructureoncatalyticperformance
AT jimenezdanielgoma exceptionallowtemperaturecooxidationovernoblemetalfreeirondopedhollanditesanindepthanalysisoftheinfluenceofthedefectstructureoncatalyticperformance
AT portehaultdavid exceptionallowtemperaturecooxidationovernoblemetalfreeirondopedhollanditesanindepthanalysisoftheinfluenceofthedefectstructureoncatalyticperformance
AT sanchezclement exceptionallowtemperaturecooxidationovernoblemetalfreeirondopedhollanditesanindepthanalysisoftheinfluenceofthedefectstructureoncatalyticperformance
AT caberomariona exceptionallowtemperaturecooxidationovernoblemetalfreeirondopedhollanditesanindepthanalysisoftheinfluenceofthedefectstructureoncatalyticperformance
AT martinezariasarturo exceptionallowtemperaturecooxidationovernoblemetalfreeirondopedhollanditesanindepthanalysisoftheinfluenceofthedefectstructureoncatalyticperformance
AT gonzalezcalbetjosem exceptionallowtemperaturecooxidationovernoblemetalfreeirondopedhollanditesanindepthanalysisoftheinfluenceofthedefectstructureoncatalyticperformance
AT calvinojosej exceptionallowtemperaturecooxidationovernoblemetalfreeirondopedhollanditesanindepthanalysisoftheinfluenceofthedefectstructureoncatalyticperformance