Cargando…

Cervical Cancer Prognosis and Diagnosis Using Electrical Impedance Spectroscopy

Electrical impedance spectroscopy (EIS) has been used as an adjunct to colposcopy for cervical cancer diagnosis for many years, Currently, the template match method is employed for EIS measurements analysis, where the measured EIS spectra are compared with the templates generated from three-dimensio...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Ping, Highfield, Peter E., Lang, Zi-Qiang, Kell, Darren
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Sciendo 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8713385/
https://www.ncbi.nlm.nih.gov/pubmed/35069951
http://dx.doi.org/10.2478/joeb-2021-0018
_version_ 1784623759320154112
author Li, Ping
Highfield, Peter E.
Lang, Zi-Qiang
Kell, Darren
author_facet Li, Ping
Highfield, Peter E.
Lang, Zi-Qiang
Kell, Darren
author_sort Li, Ping
collection PubMed
description Electrical impedance spectroscopy (EIS) has been used as an adjunct to colposcopy for cervical cancer diagnosis for many years, Currently, the template match method is employed for EIS measurements analysis, where the measured EIS spectra are compared with the templates generated from three-dimensional finite element (FE) models of cancerous and non-cancerous cervical tissue, and the matches between the measured EIS spectra and the templates are then used to derive a score that indicates the association strength of the measured EIS to the High-Grade Cervical Intraepithelial Neoplasia (HG CIN). These FE models can be viewed as the computational versions of the associated physical tissue models. In this paper, the problem is revisited with an objective to develop a new method for EIS data analysis that might reveal the relationship between the change in the tissue structure due to disease and the change in the measured spectrum. This could provide us with important information to understand the histopathological mechanism that underpins the EIS-based HG CIN diagnostic decision making and the prognostic value of EIS for cervical cancer diagnosis. A further objective is to develop an alternative EIS data processing method for HG CIN detection that does not rely on physical models of tissues so as to facilitate extending the EIS technique to new medical diagnostic applications where the template spectra are not available. An EIS data-driven method was developed in this paper to achieve the above objectives, where the EIS data analysis for cervical cancer diagnosis and prognosis were formulated as the classification problems and a Cole model-based spectrum curve fitting approach was proposed to extract features from EIS readings for classification. Machine learning techniques were then used to build classification models with the selected features for cervical cancer diagnosis and evaluation of the prognostic value of the measured EIS. The interpretable classification models were developed with real EIS data sets, which enable us to associate the changes in the observed EIS and the risk of being HG CIN or developing HG CIN with the changes in tissue structure due to disease. The developed classification models were used for HG CIN detection and evaluation of the prognostic value of EIS and the results demonstrated the effectiveness of the developed method. The method developed is of long-term benefit for EIS–based cervical cancer diagnosis and, in conjunction with standard colposcopy, there is the potential for the developed method to provide a more effective and efficient patient management strategy for clinic practice.
format Online
Article
Text
id pubmed-8713385
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Sciendo
record_format MEDLINE/PubMed
spelling pubmed-87133852022-01-20 Cervical Cancer Prognosis and Diagnosis Using Electrical Impedance Spectroscopy Li, Ping Highfield, Peter E. Lang, Zi-Qiang Kell, Darren J Electr Bioimpedance Articles Electrical impedance spectroscopy (EIS) has been used as an adjunct to colposcopy for cervical cancer diagnosis for many years, Currently, the template match method is employed for EIS measurements analysis, where the measured EIS spectra are compared with the templates generated from three-dimensional finite element (FE) models of cancerous and non-cancerous cervical tissue, and the matches between the measured EIS spectra and the templates are then used to derive a score that indicates the association strength of the measured EIS to the High-Grade Cervical Intraepithelial Neoplasia (HG CIN). These FE models can be viewed as the computational versions of the associated physical tissue models. In this paper, the problem is revisited with an objective to develop a new method for EIS data analysis that might reveal the relationship between the change in the tissue structure due to disease and the change in the measured spectrum. This could provide us with important information to understand the histopathological mechanism that underpins the EIS-based HG CIN diagnostic decision making and the prognostic value of EIS for cervical cancer diagnosis. A further objective is to develop an alternative EIS data processing method for HG CIN detection that does not rely on physical models of tissues so as to facilitate extending the EIS technique to new medical diagnostic applications where the template spectra are not available. An EIS data-driven method was developed in this paper to achieve the above objectives, where the EIS data analysis for cervical cancer diagnosis and prognosis were formulated as the classification problems and a Cole model-based spectrum curve fitting approach was proposed to extract features from EIS readings for classification. Machine learning techniques were then used to build classification models with the selected features for cervical cancer diagnosis and evaluation of the prognostic value of the measured EIS. The interpretable classification models were developed with real EIS data sets, which enable us to associate the changes in the observed EIS and the risk of being HG CIN or developing HG CIN with the changes in tissue structure due to disease. The developed classification models were used for HG CIN detection and evaluation of the prognostic value of EIS and the results demonstrated the effectiveness of the developed method. The method developed is of long-term benefit for EIS–based cervical cancer diagnosis and, in conjunction with standard colposcopy, there is the potential for the developed method to provide a more effective and efficient patient management strategy for clinic practice. Sciendo 2021-12-27 /pmc/articles/PMC8713385/ /pubmed/35069951 http://dx.doi.org/10.2478/joeb-2021-0018 Text en © 2021 Ping Li, Peter E. Highfield , Zi-Qiang Lang, and Darren Kell, published by Sciendo https://creativecommons.org/licenses/by/4.0/This work is licensed under the Creative Commons Attribution 4.0 International License.
spellingShingle Articles
Li, Ping
Highfield, Peter E.
Lang, Zi-Qiang
Kell, Darren
Cervical Cancer Prognosis and Diagnosis Using Electrical Impedance Spectroscopy
title Cervical Cancer Prognosis and Diagnosis Using Electrical Impedance Spectroscopy
title_full Cervical Cancer Prognosis and Diagnosis Using Electrical Impedance Spectroscopy
title_fullStr Cervical Cancer Prognosis and Diagnosis Using Electrical Impedance Spectroscopy
title_full_unstemmed Cervical Cancer Prognosis and Diagnosis Using Electrical Impedance Spectroscopy
title_short Cervical Cancer Prognosis and Diagnosis Using Electrical Impedance Spectroscopy
title_sort cervical cancer prognosis and diagnosis using electrical impedance spectroscopy
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8713385/
https://www.ncbi.nlm.nih.gov/pubmed/35069951
http://dx.doi.org/10.2478/joeb-2021-0018
work_keys_str_mv AT liping cervicalcancerprognosisanddiagnosisusingelectricalimpedancespectroscopy
AT highfieldpetere cervicalcancerprognosisanddiagnosisusingelectricalimpedancespectroscopy
AT langziqiang cervicalcancerprognosisanddiagnosisusingelectricalimpedancespectroscopy
AT kelldarren cervicalcancerprognosisanddiagnosisusingelectricalimpedancespectroscopy