Cargando…
Effect of Nocturnal Oxygen on Blood Pressure Response to Altitude Exposure in COPD – Data from a Randomized Placebo-Controlled Cross-Over Trial
PURPOSE: Patients with chronic obstructive pulmonary disease (COPD) are particularly vulnerable to hypoxia-induced autonomic dysregulation. Hypoxemia is marked during sleep. In COPD, altitude exposure is associated with an increase in blood pressure (BP) and a decrease in baroreflex-sensitivity (BRS...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8713709/ https://www.ncbi.nlm.nih.gov/pubmed/34992358 http://dx.doi.org/10.2147/COPD.S331658 |
Sumario: | PURPOSE: Patients with chronic obstructive pulmonary disease (COPD) are particularly vulnerable to hypoxia-induced autonomic dysregulation. Hypoxemia is marked during sleep. In COPD, altitude exposure is associated with an increase in blood pressure (BP) and a decrease in baroreflex-sensitivity (BRS). Whether nocturnal oxygen therapy (NOT) may mitigate these cardiovascular autonomic changes in COPD at altitude is unknown. MATERIALS AND METHODS: In a randomized placebo-controlled cross-over trial, 32 patients with moderate-to-severe COPD living <800 m were subsequently allocated to NOT and placebo during acute exposure to altitude. Measurements were done at low altitude at 490 m and during two stays at 2048 m on NOT (3 L/min) and placebo (3 L/min, ambient air) via nasal cannula. Allocation and intervention sequences were randomized. Outcomes of interest were BP, BRS (from beat-to-beat BP measurement), BP variability (BPV), and heart rate. RESULTS: About 23/32 patients finished the trial per protocol (mean (SD) age 66 (5) y, FEV(1) 62 (14) % predicted) and 9/32 experienced altitude-related illnesses (8 vs 1, p < 0.05 placebo vs NOT). NOT significantly mitigated the altitude-induced increase in systolic BP compared to placebo (Δ median −5.8 [95% CI −22.2 to −1.4] mmHg, p = 0.05) but not diastolic BP (−3.5 [95% CI −12.6 to 3.0] mmHg; p = 0.21) or BPV. BRS at altitude was significantly higher in NOT than in placebo (1.7 [95% CI 0.3 to 3.4] ms/mmHg, p = 0.02). CONCLUSION: NOT may protect from hypoxia-induced autonomic dysregulation upon altitude exposure in COPD and thus protect from a relevant increase in BP and decrease in BRS. NOT may provide cardiovascular benefits in COPD during conditions of increased hypoxemia and may be considered in COPD travelling to altitude. |
---|