Cargando…
Developmental gene regulatory network connections predicted by machine learning from gene expression data alone
Gene regulatory network (GRN) inference can now take advantage of powerful machine learning algorithms to complement traditional experimental methods in building gene networks. However, the dynamical nature of embryonic development–representing the time-dependent interactions between thousands of tr...
Autores principales: | Zhang, Jingyi, Ibrahim, Farhan, Najmulski, Emily, Katholos, George, Altarawy, Doaa, Heath, Lenwood S., Tulin, Sarah L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8714117/ https://www.ncbi.nlm.nih.gov/pubmed/34962963 http://dx.doi.org/10.1371/journal.pone.0261926 |
Ejemplares similares
-
Expresso: A database and web server for exploring the interaction of transcription factors and their target genes in
Arabidopsis thaliana using ChIP-Seq peak data
por: Aghamirzaie, Delasa, et al.
Publicado: (2017) -
A Machine Learning Approach to Predict Gene Regulatory Networks in Seed Development in Arabidopsis
por: Ni, Ying, et al.
Publicado: (2016) -
Computational Identification of Tissue-Specific Splicing Regulatory Elements in Human Genes from RNA-Seq Data
por: Badr, Eman, et al.
Publicado: (2016) -
Identification of regulatory modules in genome scale transcription regulatory networks
por: Song, Qi, et al.
Publicado: (2017) -
Connecting genomic islands across prokaryotic and phage genomes via protein families
por: Aldaihani, Reem, et al.
Publicado: (2023)