Cargando…
Improving QSAR Modeling for Predictive Toxicology using Publicly Aggregated Semantic Graph Data and Graph Neural Networks
Quantitative Structure-Activity Relationship (QSAR) modeling is a common computational technique for predicting chemical toxicity, but a lack of new methodological innovations has impeded QSAR performance on many tasks. We show that contemporary QSAR modeling for predictive toxicology can be substan...
Autores principales: | Romano, Joseph D., Hao, Yun, Moore, Jason H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8714189/ https://www.ncbi.nlm.nih.gov/pubmed/34890148 |
Ejemplares similares
-
Attention-Based Aggregation Graph Networks for Knowledge Graph Information Transfer
por: Zhao, Ming, et al.
Publicado: (2020) -
ESA-FedGNN: Efficient secure aggregation for federated graph neural networks
por: Liu, Yanjun, et al.
Publicado: (2023) -
Knowledge graph aids comprehensive explanation of drug and chemical toxicity
por: Hao, Yun, et al.
Publicado: (2023) -
Reproducibility and Robustness of Graph Measures of the Associative-Semantic Network
por: Wang, Yu, et al.
Publicado: (2014) -
Exploiting semantic web knowledge graphs in data mining
por: Ristoski, P
Publicado: (2019)