Cargando…
A predictive model for next cycle start date that accounts for adherence in menstrual self-tracking
OBJECTIVE: The study sought to build predictive models of next menstrual cycle start date based on mobile health self-tracked cycle data. Because app users may skip tracking, disentangling physiological patterns of menstruation from tracking behaviors is necessary for the development of predictive m...
Autores principales: | Li, Kathy, Urteaga, Iñigo, Shea, Amanda, Vitzthum, Virginia J, Wiggins, Chris H, Elhadad, Noémie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8714275/ https://www.ncbi.nlm.nih.gov/pubmed/34534312 http://dx.doi.org/10.1093/jamia/ocab182 |
Ejemplares similares
-
Characterizing physiological and symptomatic variation in menstrual cycles using self-tracked mobile-health data
por: Li, Kathy, et al.
Publicado: (2020) -
Learning endometriosis phenotypes from patient-generated data
por: Urteaga, Iñigo, et al.
Publicado: (2020) -
The messiness of the menstruator: assessing personas and functionalities of
menstrual tracking apps
por: Pichon, Adrienne, et al.
Publicado: (2021) -
More than blood: app-tracking reveals variability in heavy menstrual bleeding construct
por: Shea, Amanda A., et al.
Publicado: (2023) -
Correction: More than blood: app-tracking reveals variability in heavy menstrual bleeding construct
por: Shea, Amanda A., et al.
Publicado: (2023)