Cargando…

TGF-β1 potentiates Vγ9Vδ2 T cell adoptive immunotherapy of cancer

Despite its role in cancer surveillance, adoptive immunotherapy using γδ T cells has achieved limited efficacy. To enhance trafficking to bone marrow, circulating Vγ9Vδ2 T cells are expanded in serum-free medium containing TGF-β1 and IL-2 (γδ[T2] cells) or medium containing IL-2 alone (γδ[2] cells,...

Descripción completa

Detalles Bibliográficos
Autores principales: Beatson, Richard E., Parente-Pereira, Ana C., Halim, Leena, Cozzetto, Domenico, Hull, Caroline, Whilding, Lynsey M., Martinez, Olivier, Taylor, Chelsea A., Obajdin, Jana, Luu Hoang, Kim Ngan, Draper, Benjamin, Iqbal, Ayesha, Hardiman, Tom, Zabinski, Tomasz, Man, Francis, de Rosales, Rafael T.M., Xie, Jinger, Aswad, Fred, Achkova, Daniela, Joseph, Chung-Yang Ricardo, Ciprut, Sara, Adami, Antonella, Roider, Helge G., Hess-Stumpp, Holger, Győrffy, Balázs, Quist, Jelmar, Grigoriadis, Anita, Sommer, Anette, Tutt, Andrew N.J., Davies, David M., Maher, John
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8714942/
https://www.ncbi.nlm.nih.gov/pubmed/35028614
http://dx.doi.org/10.1016/j.xcrm.2021.100473
_version_ 1784624038042140672
author Beatson, Richard E.
Parente-Pereira, Ana C.
Halim, Leena
Cozzetto, Domenico
Hull, Caroline
Whilding, Lynsey M.
Martinez, Olivier
Taylor, Chelsea A.
Obajdin, Jana
Luu Hoang, Kim Ngan
Draper, Benjamin
Iqbal, Ayesha
Hardiman, Tom
Zabinski, Tomasz
Man, Francis
de Rosales, Rafael T.M.
Xie, Jinger
Aswad, Fred
Achkova, Daniela
Joseph, Chung-Yang Ricardo
Ciprut, Sara
Adami, Antonella
Roider, Helge G.
Hess-Stumpp, Holger
Győrffy, Balázs
Quist, Jelmar
Grigoriadis, Anita
Sommer, Anette
Tutt, Andrew N.J.
Davies, David M.
Maher, John
author_facet Beatson, Richard E.
Parente-Pereira, Ana C.
Halim, Leena
Cozzetto, Domenico
Hull, Caroline
Whilding, Lynsey M.
Martinez, Olivier
Taylor, Chelsea A.
Obajdin, Jana
Luu Hoang, Kim Ngan
Draper, Benjamin
Iqbal, Ayesha
Hardiman, Tom
Zabinski, Tomasz
Man, Francis
de Rosales, Rafael T.M.
Xie, Jinger
Aswad, Fred
Achkova, Daniela
Joseph, Chung-Yang Ricardo
Ciprut, Sara
Adami, Antonella
Roider, Helge G.
Hess-Stumpp, Holger
Győrffy, Balázs
Quist, Jelmar
Grigoriadis, Anita
Sommer, Anette
Tutt, Andrew N.J.
Davies, David M.
Maher, John
author_sort Beatson, Richard E.
collection PubMed
description Despite its role in cancer surveillance, adoptive immunotherapy using γδ T cells has achieved limited efficacy. To enhance trafficking to bone marrow, circulating Vγ9Vδ2 T cells are expanded in serum-free medium containing TGF-β1 and IL-2 (γδ[T2] cells) or medium containing IL-2 alone (γδ[2] cells, as the control). Unexpectedly, the yield and viability of γδ[T2] cells are also increased by TGF-β1, when compared to γδ[2] controls. γδ[T2] cells are less differentiated and yet display increased cytolytic activity, cytokine release, and antitumor activity in several leukemic and solid tumor models. Efficacy is further enhanced by cancer cell sensitization using aminobisphosphonates or Ara-C. A number of contributory effects of TGF-β are described, including prostaglandin E(2) receptor downmodulation, TGF-β insensitivity, and upregulated integrin activity. Biological relevance is supported by the identification of a favorable γδ[T2] signature in acute myeloid leukemia (AML). Given their enhanced therapeutic activity and compatibility with allogeneic use, γδ[T2] cells warrant evaluation in cancer immunotherapy.
format Online
Article
Text
id pubmed-8714942
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-87149422022-01-12 TGF-β1 potentiates Vγ9Vδ2 T cell adoptive immunotherapy of cancer Beatson, Richard E. Parente-Pereira, Ana C. Halim, Leena Cozzetto, Domenico Hull, Caroline Whilding, Lynsey M. Martinez, Olivier Taylor, Chelsea A. Obajdin, Jana Luu Hoang, Kim Ngan Draper, Benjamin Iqbal, Ayesha Hardiman, Tom Zabinski, Tomasz Man, Francis de Rosales, Rafael T.M. Xie, Jinger Aswad, Fred Achkova, Daniela Joseph, Chung-Yang Ricardo Ciprut, Sara Adami, Antonella Roider, Helge G. Hess-Stumpp, Holger Győrffy, Balázs Quist, Jelmar Grigoriadis, Anita Sommer, Anette Tutt, Andrew N.J. Davies, David M. Maher, John Cell Rep Med Article Despite its role in cancer surveillance, adoptive immunotherapy using γδ T cells has achieved limited efficacy. To enhance trafficking to bone marrow, circulating Vγ9Vδ2 T cells are expanded in serum-free medium containing TGF-β1 and IL-2 (γδ[T2] cells) or medium containing IL-2 alone (γδ[2] cells, as the control). Unexpectedly, the yield and viability of γδ[T2] cells are also increased by TGF-β1, when compared to γδ[2] controls. γδ[T2] cells are less differentiated and yet display increased cytolytic activity, cytokine release, and antitumor activity in several leukemic and solid tumor models. Efficacy is further enhanced by cancer cell sensitization using aminobisphosphonates or Ara-C. A number of contributory effects of TGF-β are described, including prostaglandin E(2) receptor downmodulation, TGF-β insensitivity, and upregulated integrin activity. Biological relevance is supported by the identification of a favorable γδ[T2] signature in acute myeloid leukemia (AML). Given their enhanced therapeutic activity and compatibility with allogeneic use, γδ[T2] cells warrant evaluation in cancer immunotherapy. Elsevier 2021-12-21 /pmc/articles/PMC8714942/ /pubmed/35028614 http://dx.doi.org/10.1016/j.xcrm.2021.100473 Text en © 2021 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Beatson, Richard E.
Parente-Pereira, Ana C.
Halim, Leena
Cozzetto, Domenico
Hull, Caroline
Whilding, Lynsey M.
Martinez, Olivier
Taylor, Chelsea A.
Obajdin, Jana
Luu Hoang, Kim Ngan
Draper, Benjamin
Iqbal, Ayesha
Hardiman, Tom
Zabinski, Tomasz
Man, Francis
de Rosales, Rafael T.M.
Xie, Jinger
Aswad, Fred
Achkova, Daniela
Joseph, Chung-Yang Ricardo
Ciprut, Sara
Adami, Antonella
Roider, Helge G.
Hess-Stumpp, Holger
Győrffy, Balázs
Quist, Jelmar
Grigoriadis, Anita
Sommer, Anette
Tutt, Andrew N.J.
Davies, David M.
Maher, John
TGF-β1 potentiates Vγ9Vδ2 T cell adoptive immunotherapy of cancer
title TGF-β1 potentiates Vγ9Vδ2 T cell adoptive immunotherapy of cancer
title_full TGF-β1 potentiates Vγ9Vδ2 T cell adoptive immunotherapy of cancer
title_fullStr TGF-β1 potentiates Vγ9Vδ2 T cell adoptive immunotherapy of cancer
title_full_unstemmed TGF-β1 potentiates Vγ9Vδ2 T cell adoptive immunotherapy of cancer
title_short TGF-β1 potentiates Vγ9Vδ2 T cell adoptive immunotherapy of cancer
title_sort tgf-β1 potentiates vγ9vδ2 t cell adoptive immunotherapy of cancer
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8714942/
https://www.ncbi.nlm.nih.gov/pubmed/35028614
http://dx.doi.org/10.1016/j.xcrm.2021.100473
work_keys_str_mv AT beatsonricharde tgfb1potentiatesvg9vd2tcelladoptiveimmunotherapyofcancer
AT parentepereiraanac tgfb1potentiatesvg9vd2tcelladoptiveimmunotherapyofcancer
AT halimleena tgfb1potentiatesvg9vd2tcelladoptiveimmunotherapyofcancer
AT cozzettodomenico tgfb1potentiatesvg9vd2tcelladoptiveimmunotherapyofcancer
AT hullcaroline tgfb1potentiatesvg9vd2tcelladoptiveimmunotherapyofcancer
AT whildinglynseym tgfb1potentiatesvg9vd2tcelladoptiveimmunotherapyofcancer
AT martinezolivier tgfb1potentiatesvg9vd2tcelladoptiveimmunotherapyofcancer
AT taylorchelseaa tgfb1potentiatesvg9vd2tcelladoptiveimmunotherapyofcancer
AT obajdinjana tgfb1potentiatesvg9vd2tcelladoptiveimmunotherapyofcancer
AT luuhoangkimngan tgfb1potentiatesvg9vd2tcelladoptiveimmunotherapyofcancer
AT draperbenjamin tgfb1potentiatesvg9vd2tcelladoptiveimmunotherapyofcancer
AT iqbalayesha tgfb1potentiatesvg9vd2tcelladoptiveimmunotherapyofcancer
AT hardimantom tgfb1potentiatesvg9vd2tcelladoptiveimmunotherapyofcancer
AT zabinskitomasz tgfb1potentiatesvg9vd2tcelladoptiveimmunotherapyofcancer
AT manfrancis tgfb1potentiatesvg9vd2tcelladoptiveimmunotherapyofcancer
AT derosalesrafaeltm tgfb1potentiatesvg9vd2tcelladoptiveimmunotherapyofcancer
AT xiejinger tgfb1potentiatesvg9vd2tcelladoptiveimmunotherapyofcancer
AT aswadfred tgfb1potentiatesvg9vd2tcelladoptiveimmunotherapyofcancer
AT achkovadaniela tgfb1potentiatesvg9vd2tcelladoptiveimmunotherapyofcancer
AT josephchungyangricardo tgfb1potentiatesvg9vd2tcelladoptiveimmunotherapyofcancer
AT ciprutsara tgfb1potentiatesvg9vd2tcelladoptiveimmunotherapyofcancer
AT adamiantonella tgfb1potentiatesvg9vd2tcelladoptiveimmunotherapyofcancer
AT roiderhelgeg tgfb1potentiatesvg9vd2tcelladoptiveimmunotherapyofcancer
AT hessstumppholger tgfb1potentiatesvg9vd2tcelladoptiveimmunotherapyofcancer
AT gyorffybalazs tgfb1potentiatesvg9vd2tcelladoptiveimmunotherapyofcancer
AT quistjelmar tgfb1potentiatesvg9vd2tcelladoptiveimmunotherapyofcancer
AT grigoriadisanita tgfb1potentiatesvg9vd2tcelladoptiveimmunotherapyofcancer
AT sommeranette tgfb1potentiatesvg9vd2tcelladoptiveimmunotherapyofcancer
AT tuttandrewnj tgfb1potentiatesvg9vd2tcelladoptiveimmunotherapyofcancer
AT daviesdavidm tgfb1potentiatesvg9vd2tcelladoptiveimmunotherapyofcancer
AT maherjohn tgfb1potentiatesvg9vd2tcelladoptiveimmunotherapyofcancer