Cargando…
Lactobacillus fermentum CQPC08 Attenuates Exercise-Induced Fatigue in Mice Through Its Antioxidant Effects and Effective Intervention of Galactooligosaccharide
AIM: The purpose of this study is to study the antioxidant effect of Lactobacillus fermentum CQPC08 (CQPC08) on exercise-induced fatigue, and the beneficial intervention of GOS on CQPC08. METHODS: We use the treadmill to establish a fatigue model caused by exercise, and perform drug treatment after...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8714972/ https://www.ncbi.nlm.nih.gov/pubmed/34992351 http://dx.doi.org/10.2147/DDDT.S317456 |
_version_ | 1784624045571964928 |
---|---|
author | Liu, Dong Liu, Da Chuan Fan, Hao Wang, Yu |
author_facet | Liu, Dong Liu, Da Chuan Fan, Hao Wang, Yu |
author_sort | Liu, Dong |
collection | PubMed |
description | AIM: The purpose of this study is to study the antioxidant effect of Lactobacillus fermentum CQPC08 (CQPC08) on exercise-induced fatigue, and the beneficial intervention of GOS on CQPC08. METHODS: We use the treadmill to establish a fatigue model caused by exercise, and perform drug treatment after exercise. We tested the exhaustive exercise time of mice; investigated the changes of mice body weight, liver index, histopathology, serum biochemical indicators and mRNA expression levels of oxidative and inflammation-related genes; and assessed the potential fatigue inhibitory effect of CQPC08, and the anti-oxidation effect of the combination of GOS and CQPC08. RESULTS: The results suggest that CQPC08 and combination with GOS reduces fatigue-induced oxidative damage of the liver, and it decreases blood urea nitrogen (BUN), lactic acid (LA), glutamic-oxaloacetic transaminase (GOT), glutamic-pyruvic transaminase (GPT), malonaldehyde (MDA), inducible nitric oxide synthase (iNOS), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 in serum. Higher levels of serum catalase (CAT), glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) were found. Treatment with the CQPC08 and combination with GOS correlates with lower relative mRNA expression levels of neuronal NOS (nNOS), iNOS, and TNF-α, and with higher mRNA expression levels of catalase and copper/zinc (Cu/Zn) and manganese (Mn) SOD enzymes in the liver and muscles. CONCLUSION: These results suggest that CQPC08 can resolve exercise-induced fatigue by improving antioxidant ability in mice, and the combination of GOS and CQPC08 enhances this ability of CQPC08. |
format | Online Article Text |
id | pubmed-8714972 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Dove |
record_format | MEDLINE/PubMed |
spelling | pubmed-87149722022-01-05 Lactobacillus fermentum CQPC08 Attenuates Exercise-Induced Fatigue in Mice Through Its Antioxidant Effects and Effective Intervention of Galactooligosaccharide Liu, Dong Liu, Da Chuan Fan, Hao Wang, Yu Drug Des Devel Ther Original Research AIM: The purpose of this study is to study the antioxidant effect of Lactobacillus fermentum CQPC08 (CQPC08) on exercise-induced fatigue, and the beneficial intervention of GOS on CQPC08. METHODS: We use the treadmill to establish a fatigue model caused by exercise, and perform drug treatment after exercise. We tested the exhaustive exercise time of mice; investigated the changes of mice body weight, liver index, histopathology, serum biochemical indicators and mRNA expression levels of oxidative and inflammation-related genes; and assessed the potential fatigue inhibitory effect of CQPC08, and the anti-oxidation effect of the combination of GOS and CQPC08. RESULTS: The results suggest that CQPC08 and combination with GOS reduces fatigue-induced oxidative damage of the liver, and it decreases blood urea nitrogen (BUN), lactic acid (LA), glutamic-oxaloacetic transaminase (GOT), glutamic-pyruvic transaminase (GPT), malonaldehyde (MDA), inducible nitric oxide synthase (iNOS), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 in serum. Higher levels of serum catalase (CAT), glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) were found. Treatment with the CQPC08 and combination with GOS correlates with lower relative mRNA expression levels of neuronal NOS (nNOS), iNOS, and TNF-α, and with higher mRNA expression levels of catalase and copper/zinc (Cu/Zn) and manganese (Mn) SOD enzymes in the liver and muscles. CONCLUSION: These results suggest that CQPC08 can resolve exercise-induced fatigue by improving antioxidant ability in mice, and the combination of GOS and CQPC08 enhances this ability of CQPC08. Dove 2021-12-24 /pmc/articles/PMC8714972/ /pubmed/34992351 http://dx.doi.org/10.2147/DDDT.S317456 Text en © 2021 Liu et al. https://creativecommons.org/licenses/by-nc/3.0/This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/ (https://creativecommons.org/licenses/by-nc/3.0/) ). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php). |
spellingShingle | Original Research Liu, Dong Liu, Da Chuan Fan, Hao Wang, Yu Lactobacillus fermentum CQPC08 Attenuates Exercise-Induced Fatigue in Mice Through Its Antioxidant Effects and Effective Intervention of Galactooligosaccharide |
title | Lactobacillus fermentum CQPC08 Attenuates Exercise-Induced Fatigue in Mice Through Its Antioxidant Effects and Effective Intervention of Galactooligosaccharide |
title_full | Lactobacillus fermentum CQPC08 Attenuates Exercise-Induced Fatigue in Mice Through Its Antioxidant Effects and Effective Intervention of Galactooligosaccharide |
title_fullStr | Lactobacillus fermentum CQPC08 Attenuates Exercise-Induced Fatigue in Mice Through Its Antioxidant Effects and Effective Intervention of Galactooligosaccharide |
title_full_unstemmed | Lactobacillus fermentum CQPC08 Attenuates Exercise-Induced Fatigue in Mice Through Its Antioxidant Effects and Effective Intervention of Galactooligosaccharide |
title_short | Lactobacillus fermentum CQPC08 Attenuates Exercise-Induced Fatigue in Mice Through Its Antioxidant Effects and Effective Intervention of Galactooligosaccharide |
title_sort | lactobacillus fermentum cqpc08 attenuates exercise-induced fatigue in mice through its antioxidant effects and effective intervention of galactooligosaccharide |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8714972/ https://www.ncbi.nlm.nih.gov/pubmed/34992351 http://dx.doi.org/10.2147/DDDT.S317456 |
work_keys_str_mv | AT liudong lactobacillusfermentumcqpc08attenuatesexerciseinducedfatigueinmicethroughitsantioxidanteffectsandeffectiveinterventionofgalactooligosaccharide AT liudachuan lactobacillusfermentumcqpc08attenuatesexerciseinducedfatigueinmicethroughitsantioxidanteffectsandeffectiveinterventionofgalactooligosaccharide AT fanhao lactobacillusfermentumcqpc08attenuatesexerciseinducedfatigueinmicethroughitsantioxidanteffectsandeffectiveinterventionofgalactooligosaccharide AT wangyu lactobacillusfermentumcqpc08attenuatesexerciseinducedfatigueinmicethroughitsantioxidanteffectsandeffectiveinterventionofgalactooligosaccharide |