Cargando…
Short-term step reduction reduces citrate synthase activity without altering skeletal muscle markers of oxidative metabolism or insulin-mediated signaling in young males
Mitochondria are critical to skeletal muscle contractile function and metabolic health. Short-term periods of step reduction (SR) are associated with alterations in muscle protein turnover and mass. However, the effects of SR on mitochondrial metabolism/muscle oxidative metabolism and insulin-mediat...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Physiological Society
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8714983/ https://www.ncbi.nlm.nih.gov/pubmed/34734783 http://dx.doi.org/10.1152/japplphysiol.00650.2021 |
_version_ | 1784624045816283136 |
---|---|
author | Edwards, Sophie J. Shad, Brandon J. Marshall, Ryan N. Morgan, Paul T. Wallis, Gareth A. Breen, Leigh |
author_facet | Edwards, Sophie J. Shad, Brandon J. Marshall, Ryan N. Morgan, Paul T. Wallis, Gareth A. Breen, Leigh |
author_sort | Edwards, Sophie J. |
collection | PubMed |
description | Mitochondria are critical to skeletal muscle contractile function and metabolic health. Short-term periods of step reduction (SR) are associated with alterations in muscle protein turnover and mass. However, the effects of SR on mitochondrial metabolism/muscle oxidative metabolism and insulin-mediated signaling are unclear. We tested the hypothesis that the total and/or phosphorylated protein content of key skeletal muscle markers of mitochondrial/oxidative metabolism, and insulin-mediated signaling would be altered over 7 days of SR in young healthy males. Eleven, healthy, recreationally active males (means ± SE, age: 22 ± 1 yr, BMI: 23.4 ± 0.7 kg·m(2)) underwent a 7-day period of SR. Immediately before and following SR, fasted-state muscle biopsy samples were acquired and analyzed for the assessment of total and phosphorylated protein content of key markers of mitochondrial/oxidative metabolism and insulin-mediated signaling. Daily step count was significantly reduced during the SR intervention (13,054 ± 833 to 1,192 ± 99 steps·day(−1), P < 0.001). Following SR, there was a significant decline in maximal citrate synthase activity (fold change: 0.94 ± 0.08, P < 0.05) and a significant increase in the protein content of p-glycogen synthase (P-GS(S641); fold change: 1.47 ± 0.14, P < 0.05). No significant differences were observed in the total or phosphorylated protein content of other key markers of insulin-mediated signaling, oxidative metabolism, mitochondrial function, or mitochondrial dynamics (all P > 0.05). These results suggest that short-term SR reduces the maximal activity of citrate synthase, a marker of mitochondrial content, without altering the total or phosphorylated protein content of key markers of skeletal muscle mitochondrial metabolism and insulin signaling in young healthy males. NEW & NOTEWORTHY Short-term (7 day) step reduction reduces the activity of citrate synthase without altering the total or phosphorylated protein content of key markers of skeletal muscle mitochondrial metabolism and insulin signaling in young healthy males. |
format | Online Article Text |
id | pubmed-8714983 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Physiological Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-87149832022-02-09 Short-term step reduction reduces citrate synthase activity without altering skeletal muscle markers of oxidative metabolism or insulin-mediated signaling in young males Edwards, Sophie J. Shad, Brandon J. Marshall, Ryan N. Morgan, Paul T. Wallis, Gareth A. Breen, Leigh J Appl Physiol (1985) Research Article Mitochondria are critical to skeletal muscle contractile function and metabolic health. Short-term periods of step reduction (SR) are associated with alterations in muscle protein turnover and mass. However, the effects of SR on mitochondrial metabolism/muscle oxidative metabolism and insulin-mediated signaling are unclear. We tested the hypothesis that the total and/or phosphorylated protein content of key skeletal muscle markers of mitochondrial/oxidative metabolism, and insulin-mediated signaling would be altered over 7 days of SR in young healthy males. Eleven, healthy, recreationally active males (means ± SE, age: 22 ± 1 yr, BMI: 23.4 ± 0.7 kg·m(2)) underwent a 7-day period of SR. Immediately before and following SR, fasted-state muscle biopsy samples were acquired and analyzed for the assessment of total and phosphorylated protein content of key markers of mitochondrial/oxidative metabolism and insulin-mediated signaling. Daily step count was significantly reduced during the SR intervention (13,054 ± 833 to 1,192 ± 99 steps·day(−1), P < 0.001). Following SR, there was a significant decline in maximal citrate synthase activity (fold change: 0.94 ± 0.08, P < 0.05) and a significant increase in the protein content of p-glycogen synthase (P-GS(S641); fold change: 1.47 ± 0.14, P < 0.05). No significant differences were observed in the total or phosphorylated protein content of other key markers of insulin-mediated signaling, oxidative metabolism, mitochondrial function, or mitochondrial dynamics (all P > 0.05). These results suggest that short-term SR reduces the maximal activity of citrate synthase, a marker of mitochondrial content, without altering the total or phosphorylated protein content of key markers of skeletal muscle mitochondrial metabolism and insulin signaling in young healthy males. NEW & NOTEWORTHY Short-term (7 day) step reduction reduces the activity of citrate synthase without altering the total or phosphorylated protein content of key markers of skeletal muscle mitochondrial metabolism and insulin signaling in young healthy males. American Physiological Society 2021-12-01 2021-11-04 /pmc/articles/PMC8714983/ /pubmed/34734783 http://dx.doi.org/10.1152/japplphysiol.00650.2021 Text en Copyright © 2021 The Authors https://creativecommons.org/licenses/by/4.0/Licensed under Creative Commons Attribution CC-BY 4.0 (https://creativecommons.org/licenses/by/4.0/) . Published by the American Physiological Society. |
spellingShingle | Research Article Edwards, Sophie J. Shad, Brandon J. Marshall, Ryan N. Morgan, Paul T. Wallis, Gareth A. Breen, Leigh Short-term step reduction reduces citrate synthase activity without altering skeletal muscle markers of oxidative metabolism or insulin-mediated signaling in young males |
title | Short-term step reduction reduces citrate synthase activity without altering skeletal muscle markers of oxidative metabolism or insulin-mediated signaling in young males |
title_full | Short-term step reduction reduces citrate synthase activity without altering skeletal muscle markers of oxidative metabolism or insulin-mediated signaling in young males |
title_fullStr | Short-term step reduction reduces citrate synthase activity without altering skeletal muscle markers of oxidative metabolism or insulin-mediated signaling in young males |
title_full_unstemmed | Short-term step reduction reduces citrate synthase activity without altering skeletal muscle markers of oxidative metabolism or insulin-mediated signaling in young males |
title_short | Short-term step reduction reduces citrate synthase activity without altering skeletal muscle markers of oxidative metabolism or insulin-mediated signaling in young males |
title_sort | short-term step reduction reduces citrate synthase activity without altering skeletal muscle markers of oxidative metabolism or insulin-mediated signaling in young males |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8714983/ https://www.ncbi.nlm.nih.gov/pubmed/34734783 http://dx.doi.org/10.1152/japplphysiol.00650.2021 |
work_keys_str_mv | AT edwardssophiej shorttermstepreductionreducescitratesynthaseactivitywithoutalteringskeletalmusclemarkersofoxidativemetabolismorinsulinmediatedsignalinginyoungmales AT shadbrandonj shorttermstepreductionreducescitratesynthaseactivitywithoutalteringskeletalmusclemarkersofoxidativemetabolismorinsulinmediatedsignalinginyoungmales AT marshallryann shorttermstepreductionreducescitratesynthaseactivitywithoutalteringskeletalmusclemarkersofoxidativemetabolismorinsulinmediatedsignalinginyoungmales AT morganpault shorttermstepreductionreducescitratesynthaseactivitywithoutalteringskeletalmusclemarkersofoxidativemetabolismorinsulinmediatedsignalinginyoungmales AT wallisgaretha shorttermstepreductionreducescitratesynthaseactivitywithoutalteringskeletalmusclemarkersofoxidativemetabolismorinsulinmediatedsignalinginyoungmales AT breenleigh shorttermstepreductionreducescitratesynthaseactivitywithoutalteringskeletalmusclemarkersofoxidativemetabolismorinsulinmediatedsignalinginyoungmales |