Cargando…

A random forest model based on core genome allelic profiles of MRSA for penicillin plus potassium clavulanate susceptibility prediction

Treatment failure of methicillin-resistant Staphylococcus aureus (MRSA) infections remains problematic in clinical practice because therapeutic options are limited. Penicillin plus potassium clavulanate combination (PENC) was shown to have potential for treating some MRSA infections. We investigated...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhuang, Hemu, Zhu, Feiteng, Lan, Peng, Ji, Shujuan, Sun, Lu, Chen, Yiyi, Wang, Zhengan, Jiang, Shengnan, Zhang, Linyue, Zhu, Yiwei, Jiang, Yan, Chen, Yan, Yu, Yunsong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Microbiology Society 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8715440/
https://www.ncbi.nlm.nih.gov/pubmed/34554083
http://dx.doi.org/10.1099/mgen.0.000610
_version_ 1784624127550685184
author Zhuang, Hemu
Zhu, Feiteng
Lan, Peng
Ji, Shujuan
Sun, Lu
Chen, Yiyi
Wang, Zhengan
Jiang, Shengnan
Zhang, Linyue
Zhu, Yiwei
Jiang, Yan
Chen, Yan
Yu, Yunsong
author_facet Zhuang, Hemu
Zhu, Feiteng
Lan, Peng
Ji, Shujuan
Sun, Lu
Chen, Yiyi
Wang, Zhengan
Jiang, Shengnan
Zhang, Linyue
Zhu, Yiwei
Jiang, Yan
Chen, Yan
Yu, Yunsong
author_sort Zhuang, Hemu
collection PubMed
description Treatment failure of methicillin-resistant Staphylococcus aureus (MRSA) infections remains problematic in clinical practice because therapeutic options are limited. Penicillin plus potassium clavulanate combination (PENC) was shown to have potential for treating some MRSA infections. We investigated the susceptibility of MRSA isolates and constructed a drug susceptibility prediction model for the phenotype of the PENC. We determined the minimum inhibitory concentration of PENC for MRSA (n=284) in a teaching hospital (SRRSH-MRSA). PENC susceptibility genotypes were analysed using a published genotyping scheme based on the mecA sequence. mecA expression in MRSA isolates was analysed by qPCR. We established a random forest model for predicting PENC-susceptible phenotypes using core genome allelic profiles from cgMLST analysis. We identified S2-R isolates with susceptible mecA genotypes but PENC-resistant phenotypes; these isolates expressed mecA at higher levels than did S2 MRSA (2.61 vs 0.98, P<0.05), indicating the limitation of using a single factor for predicting drug susceptibility. Using the data of selected UK-sourced MRSA (n=74) and MRSA collected in a previous national survey (NA-MRSA, n=471) as a training set, we built a model with accuracies of 0.94 and 0.93 for SRRSH-MRSA and UK-sourced MRSA (n=287, NAM-MRSA) validation sets. The AUROC of this model for SRRSH-MRSA and NAM-MRSA was 0.96 and 0.97. Although the source of the training set data affects the scope of application of the prediction model, our data demonstrated the power of the machine learning approach in predicting susceptibility from cgMLST results.
format Online
Article
Text
id pubmed-8715440
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Microbiology Society
record_format MEDLINE/PubMed
spelling pubmed-87154402021-12-29 A random forest model based on core genome allelic profiles of MRSA for penicillin plus potassium clavulanate susceptibility prediction Zhuang, Hemu Zhu, Feiteng Lan, Peng Ji, Shujuan Sun, Lu Chen, Yiyi Wang, Zhengan Jiang, Shengnan Zhang, Linyue Zhu, Yiwei Jiang, Yan Chen, Yan Yu, Yunsong Microb Genom Research Articles Treatment failure of methicillin-resistant Staphylococcus aureus (MRSA) infections remains problematic in clinical practice because therapeutic options are limited. Penicillin plus potassium clavulanate combination (PENC) was shown to have potential for treating some MRSA infections. We investigated the susceptibility of MRSA isolates and constructed a drug susceptibility prediction model for the phenotype of the PENC. We determined the minimum inhibitory concentration of PENC for MRSA (n=284) in a teaching hospital (SRRSH-MRSA). PENC susceptibility genotypes were analysed using a published genotyping scheme based on the mecA sequence. mecA expression in MRSA isolates was analysed by qPCR. We established a random forest model for predicting PENC-susceptible phenotypes using core genome allelic profiles from cgMLST analysis. We identified S2-R isolates with susceptible mecA genotypes but PENC-resistant phenotypes; these isolates expressed mecA at higher levels than did S2 MRSA (2.61 vs 0.98, P<0.05), indicating the limitation of using a single factor for predicting drug susceptibility. Using the data of selected UK-sourced MRSA (n=74) and MRSA collected in a previous national survey (NA-MRSA, n=471) as a training set, we built a model with accuracies of 0.94 and 0.93 for SRRSH-MRSA and UK-sourced MRSA (n=287, NAM-MRSA) validation sets. The AUROC of this model for SRRSH-MRSA and NAM-MRSA was 0.96 and 0.97. Although the source of the training set data affects the scope of application of the prediction model, our data demonstrated the power of the machine learning approach in predicting susceptibility from cgMLST results. Microbiology Society 2021-09-23 /pmc/articles/PMC8715440/ /pubmed/34554083 http://dx.doi.org/10.1099/mgen.0.000610 Text en © 2021 The Authors https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License.
spellingShingle Research Articles
Zhuang, Hemu
Zhu, Feiteng
Lan, Peng
Ji, Shujuan
Sun, Lu
Chen, Yiyi
Wang, Zhengan
Jiang, Shengnan
Zhang, Linyue
Zhu, Yiwei
Jiang, Yan
Chen, Yan
Yu, Yunsong
A random forest model based on core genome allelic profiles of MRSA for penicillin plus potassium clavulanate susceptibility prediction
title A random forest model based on core genome allelic profiles of MRSA for penicillin plus potassium clavulanate susceptibility prediction
title_full A random forest model based on core genome allelic profiles of MRSA for penicillin plus potassium clavulanate susceptibility prediction
title_fullStr A random forest model based on core genome allelic profiles of MRSA for penicillin plus potassium clavulanate susceptibility prediction
title_full_unstemmed A random forest model based on core genome allelic profiles of MRSA for penicillin plus potassium clavulanate susceptibility prediction
title_short A random forest model based on core genome allelic profiles of MRSA for penicillin plus potassium clavulanate susceptibility prediction
title_sort random forest model based on core genome allelic profiles of mrsa for penicillin plus potassium clavulanate susceptibility prediction
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8715440/
https://www.ncbi.nlm.nih.gov/pubmed/34554083
http://dx.doi.org/10.1099/mgen.0.000610
work_keys_str_mv AT zhuanghemu arandomforestmodelbasedoncoregenomeallelicprofilesofmrsaforpenicillinpluspotassiumclavulanatesusceptibilityprediction
AT zhufeiteng arandomforestmodelbasedoncoregenomeallelicprofilesofmrsaforpenicillinpluspotassiumclavulanatesusceptibilityprediction
AT lanpeng arandomforestmodelbasedoncoregenomeallelicprofilesofmrsaforpenicillinpluspotassiumclavulanatesusceptibilityprediction
AT jishujuan arandomforestmodelbasedoncoregenomeallelicprofilesofmrsaforpenicillinpluspotassiumclavulanatesusceptibilityprediction
AT sunlu arandomforestmodelbasedoncoregenomeallelicprofilesofmrsaforpenicillinpluspotassiumclavulanatesusceptibilityprediction
AT chenyiyi arandomforestmodelbasedoncoregenomeallelicprofilesofmrsaforpenicillinpluspotassiumclavulanatesusceptibilityprediction
AT wangzhengan arandomforestmodelbasedoncoregenomeallelicprofilesofmrsaforpenicillinpluspotassiumclavulanatesusceptibilityprediction
AT jiangshengnan arandomforestmodelbasedoncoregenomeallelicprofilesofmrsaforpenicillinpluspotassiumclavulanatesusceptibilityprediction
AT zhanglinyue arandomforestmodelbasedoncoregenomeallelicprofilesofmrsaforpenicillinpluspotassiumclavulanatesusceptibilityprediction
AT zhuyiwei arandomforestmodelbasedoncoregenomeallelicprofilesofmrsaforpenicillinpluspotassiumclavulanatesusceptibilityprediction
AT jiangyan arandomforestmodelbasedoncoregenomeallelicprofilesofmrsaforpenicillinpluspotassiumclavulanatesusceptibilityprediction
AT chenyan arandomforestmodelbasedoncoregenomeallelicprofilesofmrsaforpenicillinpluspotassiumclavulanatesusceptibilityprediction
AT yuyunsong arandomforestmodelbasedoncoregenomeallelicprofilesofmrsaforpenicillinpluspotassiumclavulanatesusceptibilityprediction
AT zhuanghemu randomforestmodelbasedoncoregenomeallelicprofilesofmrsaforpenicillinpluspotassiumclavulanatesusceptibilityprediction
AT zhufeiteng randomforestmodelbasedoncoregenomeallelicprofilesofmrsaforpenicillinpluspotassiumclavulanatesusceptibilityprediction
AT lanpeng randomforestmodelbasedoncoregenomeallelicprofilesofmrsaforpenicillinpluspotassiumclavulanatesusceptibilityprediction
AT jishujuan randomforestmodelbasedoncoregenomeallelicprofilesofmrsaforpenicillinpluspotassiumclavulanatesusceptibilityprediction
AT sunlu randomforestmodelbasedoncoregenomeallelicprofilesofmrsaforpenicillinpluspotassiumclavulanatesusceptibilityprediction
AT chenyiyi randomforestmodelbasedoncoregenomeallelicprofilesofmrsaforpenicillinpluspotassiumclavulanatesusceptibilityprediction
AT wangzhengan randomforestmodelbasedoncoregenomeallelicprofilesofmrsaforpenicillinpluspotassiumclavulanatesusceptibilityprediction
AT jiangshengnan randomforestmodelbasedoncoregenomeallelicprofilesofmrsaforpenicillinpluspotassiumclavulanatesusceptibilityprediction
AT zhanglinyue randomforestmodelbasedoncoregenomeallelicprofilesofmrsaforpenicillinpluspotassiumclavulanatesusceptibilityprediction
AT zhuyiwei randomforestmodelbasedoncoregenomeallelicprofilesofmrsaforpenicillinpluspotassiumclavulanatesusceptibilityprediction
AT jiangyan randomforestmodelbasedoncoregenomeallelicprofilesofmrsaforpenicillinpluspotassiumclavulanatesusceptibilityprediction
AT chenyan randomforestmodelbasedoncoregenomeallelicprofilesofmrsaforpenicillinpluspotassiumclavulanatesusceptibilityprediction
AT yuyunsong randomforestmodelbasedoncoregenomeallelicprofilesofmrsaforpenicillinpluspotassiumclavulanatesusceptibilityprediction