Cargando…
A random forest model based on core genome allelic profiles of MRSA for penicillin plus potassium clavulanate susceptibility prediction
Treatment failure of methicillin-resistant Staphylococcus aureus (MRSA) infections remains problematic in clinical practice because therapeutic options are limited. Penicillin plus potassium clavulanate combination (PENC) was shown to have potential for treating some MRSA infections. We investigated...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Microbiology Society
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8715440/ https://www.ncbi.nlm.nih.gov/pubmed/34554083 http://dx.doi.org/10.1099/mgen.0.000610 |
_version_ | 1784624127550685184 |
---|---|
author | Zhuang, Hemu Zhu, Feiteng Lan, Peng Ji, Shujuan Sun, Lu Chen, Yiyi Wang, Zhengan Jiang, Shengnan Zhang, Linyue Zhu, Yiwei Jiang, Yan Chen, Yan Yu, Yunsong |
author_facet | Zhuang, Hemu Zhu, Feiteng Lan, Peng Ji, Shujuan Sun, Lu Chen, Yiyi Wang, Zhengan Jiang, Shengnan Zhang, Linyue Zhu, Yiwei Jiang, Yan Chen, Yan Yu, Yunsong |
author_sort | Zhuang, Hemu |
collection | PubMed |
description | Treatment failure of methicillin-resistant Staphylococcus aureus (MRSA) infections remains problematic in clinical practice because therapeutic options are limited. Penicillin plus potassium clavulanate combination (PENC) was shown to have potential for treating some MRSA infections. We investigated the susceptibility of MRSA isolates and constructed a drug susceptibility prediction model for the phenotype of the PENC. We determined the minimum inhibitory concentration of PENC for MRSA (n=284) in a teaching hospital (SRRSH-MRSA). PENC susceptibility genotypes were analysed using a published genotyping scheme based on the mecA sequence. mecA expression in MRSA isolates was analysed by qPCR. We established a random forest model for predicting PENC-susceptible phenotypes using core genome allelic profiles from cgMLST analysis. We identified S2-R isolates with susceptible mecA genotypes but PENC-resistant phenotypes; these isolates expressed mecA at higher levels than did S2 MRSA (2.61 vs 0.98, P<0.05), indicating the limitation of using a single factor for predicting drug susceptibility. Using the data of selected UK-sourced MRSA (n=74) and MRSA collected in a previous national survey (NA-MRSA, n=471) as a training set, we built a model with accuracies of 0.94 and 0.93 for SRRSH-MRSA and UK-sourced MRSA (n=287, NAM-MRSA) validation sets. The AUROC of this model for SRRSH-MRSA and NAM-MRSA was 0.96 and 0.97. Although the source of the training set data affects the scope of application of the prediction model, our data demonstrated the power of the machine learning approach in predicting susceptibility from cgMLST results. |
format | Online Article Text |
id | pubmed-8715440 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Microbiology Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-87154402021-12-29 A random forest model based on core genome allelic profiles of MRSA for penicillin plus potassium clavulanate susceptibility prediction Zhuang, Hemu Zhu, Feiteng Lan, Peng Ji, Shujuan Sun, Lu Chen, Yiyi Wang, Zhengan Jiang, Shengnan Zhang, Linyue Zhu, Yiwei Jiang, Yan Chen, Yan Yu, Yunsong Microb Genom Research Articles Treatment failure of methicillin-resistant Staphylococcus aureus (MRSA) infections remains problematic in clinical practice because therapeutic options are limited. Penicillin plus potassium clavulanate combination (PENC) was shown to have potential for treating some MRSA infections. We investigated the susceptibility of MRSA isolates and constructed a drug susceptibility prediction model for the phenotype of the PENC. We determined the minimum inhibitory concentration of PENC for MRSA (n=284) in a teaching hospital (SRRSH-MRSA). PENC susceptibility genotypes were analysed using a published genotyping scheme based on the mecA sequence. mecA expression in MRSA isolates was analysed by qPCR. We established a random forest model for predicting PENC-susceptible phenotypes using core genome allelic profiles from cgMLST analysis. We identified S2-R isolates with susceptible mecA genotypes but PENC-resistant phenotypes; these isolates expressed mecA at higher levels than did S2 MRSA (2.61 vs 0.98, P<0.05), indicating the limitation of using a single factor for predicting drug susceptibility. Using the data of selected UK-sourced MRSA (n=74) and MRSA collected in a previous national survey (NA-MRSA, n=471) as a training set, we built a model with accuracies of 0.94 and 0.93 for SRRSH-MRSA and UK-sourced MRSA (n=287, NAM-MRSA) validation sets. The AUROC of this model for SRRSH-MRSA and NAM-MRSA was 0.96 and 0.97. Although the source of the training set data affects the scope of application of the prediction model, our data demonstrated the power of the machine learning approach in predicting susceptibility from cgMLST results. Microbiology Society 2021-09-23 /pmc/articles/PMC8715440/ /pubmed/34554083 http://dx.doi.org/10.1099/mgen.0.000610 Text en © 2021 The Authors https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License. |
spellingShingle | Research Articles Zhuang, Hemu Zhu, Feiteng Lan, Peng Ji, Shujuan Sun, Lu Chen, Yiyi Wang, Zhengan Jiang, Shengnan Zhang, Linyue Zhu, Yiwei Jiang, Yan Chen, Yan Yu, Yunsong A random forest model based on core genome allelic profiles of MRSA for penicillin plus potassium clavulanate susceptibility prediction |
title | A random forest model based on core genome allelic profiles of MRSA for penicillin plus potassium clavulanate susceptibility prediction |
title_full | A random forest model based on core genome allelic profiles of MRSA for penicillin plus potassium clavulanate susceptibility prediction |
title_fullStr | A random forest model based on core genome allelic profiles of MRSA for penicillin plus potassium clavulanate susceptibility prediction |
title_full_unstemmed | A random forest model based on core genome allelic profiles of MRSA for penicillin plus potassium clavulanate susceptibility prediction |
title_short | A random forest model based on core genome allelic profiles of MRSA for penicillin plus potassium clavulanate susceptibility prediction |
title_sort | random forest model based on core genome allelic profiles of mrsa for penicillin plus potassium clavulanate susceptibility prediction |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8715440/ https://www.ncbi.nlm.nih.gov/pubmed/34554083 http://dx.doi.org/10.1099/mgen.0.000610 |
work_keys_str_mv | AT zhuanghemu arandomforestmodelbasedoncoregenomeallelicprofilesofmrsaforpenicillinpluspotassiumclavulanatesusceptibilityprediction AT zhufeiteng arandomforestmodelbasedoncoregenomeallelicprofilesofmrsaforpenicillinpluspotassiumclavulanatesusceptibilityprediction AT lanpeng arandomforestmodelbasedoncoregenomeallelicprofilesofmrsaforpenicillinpluspotassiumclavulanatesusceptibilityprediction AT jishujuan arandomforestmodelbasedoncoregenomeallelicprofilesofmrsaforpenicillinpluspotassiumclavulanatesusceptibilityprediction AT sunlu arandomforestmodelbasedoncoregenomeallelicprofilesofmrsaforpenicillinpluspotassiumclavulanatesusceptibilityprediction AT chenyiyi arandomforestmodelbasedoncoregenomeallelicprofilesofmrsaforpenicillinpluspotassiumclavulanatesusceptibilityprediction AT wangzhengan arandomforestmodelbasedoncoregenomeallelicprofilesofmrsaforpenicillinpluspotassiumclavulanatesusceptibilityprediction AT jiangshengnan arandomforestmodelbasedoncoregenomeallelicprofilesofmrsaforpenicillinpluspotassiumclavulanatesusceptibilityprediction AT zhanglinyue arandomforestmodelbasedoncoregenomeallelicprofilesofmrsaforpenicillinpluspotassiumclavulanatesusceptibilityprediction AT zhuyiwei arandomforestmodelbasedoncoregenomeallelicprofilesofmrsaforpenicillinpluspotassiumclavulanatesusceptibilityprediction AT jiangyan arandomforestmodelbasedoncoregenomeallelicprofilesofmrsaforpenicillinpluspotassiumclavulanatesusceptibilityprediction AT chenyan arandomforestmodelbasedoncoregenomeallelicprofilesofmrsaforpenicillinpluspotassiumclavulanatesusceptibilityprediction AT yuyunsong arandomforestmodelbasedoncoregenomeallelicprofilesofmrsaforpenicillinpluspotassiumclavulanatesusceptibilityprediction AT zhuanghemu randomforestmodelbasedoncoregenomeallelicprofilesofmrsaforpenicillinpluspotassiumclavulanatesusceptibilityprediction AT zhufeiteng randomforestmodelbasedoncoregenomeallelicprofilesofmrsaforpenicillinpluspotassiumclavulanatesusceptibilityprediction AT lanpeng randomforestmodelbasedoncoregenomeallelicprofilesofmrsaforpenicillinpluspotassiumclavulanatesusceptibilityprediction AT jishujuan randomforestmodelbasedoncoregenomeallelicprofilesofmrsaforpenicillinpluspotassiumclavulanatesusceptibilityprediction AT sunlu randomforestmodelbasedoncoregenomeallelicprofilesofmrsaforpenicillinpluspotassiumclavulanatesusceptibilityprediction AT chenyiyi randomforestmodelbasedoncoregenomeallelicprofilesofmrsaforpenicillinpluspotassiumclavulanatesusceptibilityprediction AT wangzhengan randomforestmodelbasedoncoregenomeallelicprofilesofmrsaforpenicillinpluspotassiumclavulanatesusceptibilityprediction AT jiangshengnan randomforestmodelbasedoncoregenomeallelicprofilesofmrsaforpenicillinpluspotassiumclavulanatesusceptibilityprediction AT zhanglinyue randomforestmodelbasedoncoregenomeallelicprofilesofmrsaforpenicillinpluspotassiumclavulanatesusceptibilityprediction AT zhuyiwei randomforestmodelbasedoncoregenomeallelicprofilesofmrsaforpenicillinpluspotassiumclavulanatesusceptibilityprediction AT jiangyan randomforestmodelbasedoncoregenomeallelicprofilesofmrsaforpenicillinpluspotassiumclavulanatesusceptibilityprediction AT chenyan randomforestmodelbasedoncoregenomeallelicprofilesofmrsaforpenicillinpluspotassiumclavulanatesusceptibilityprediction AT yuyunsong randomforestmodelbasedoncoregenomeallelicprofilesofmrsaforpenicillinpluspotassiumclavulanatesusceptibilityprediction |