Cargando…
Robotic Kinematic measures of the arm in chronic Stroke: part 2 – strong correlation with clinical outcome measures
BACKGROUND: A detailed sensorimotor evaluation is essential in planning effective, individualized therapy post-stroke. Robotic kinematic assay may offer better accuracy and resolution to understand stroke recovery. Here we investigate the added value of distal wrist measurement to a proximal robotic...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8715630/ https://www.ncbi.nlm.nih.gov/pubmed/34963502 http://dx.doi.org/10.1186/s42234-021-00082-8 |
Sumario: | BACKGROUND: A detailed sensorimotor evaluation is essential in planning effective, individualized therapy post-stroke. Robotic kinematic assay may offer better accuracy and resolution to understand stroke recovery. Here we investigate the added value of distal wrist measurement to a proximal robotic kinematic assay to improve its correlation with clinical upper extremity measures in chronic stroke. Secondly, we compare linear and nonlinear regression models. METHODS: Data was sourced from a multicenter randomized controlled trial conducted from 2012 to 2016, investigating the combined effect of robotic therapy and transcranial direct current stimulation (tDCS). 24 kinematic metrics were derived from 4 shoulder-elbow tasks and 35 metrics from 3 wrist and forearm evaluation tasks. A correlation-based feature selection was performed, keeping only features substantially correlated with the target attribute (R > 0.5.) Nonlinear models took the form of a multilayer perceptron neural network: one hidden layer and one linear output. RESULTS: Shoulder-elbow metrics showed a significant correlation with the Fugl Meyer Assessment (upper extremity, FMA-UE), with a R = 0.82 (P < 0.001) for the linear model and R = 0.88 (P < 0.001) for the nonlinear model. Similarly, a high correlation was found for wrist kinematics and the FMA-UE (R = 0.91 (P < 0.001) and R = 0.92 (P < 0.001) for the linear and nonlinear model respectively). The combined analysis produced a correlation of R = 0.91 (P < 0.001) for the linear model and R = 0.91 (P < 0.001) for the nonlinear model. CONCLUSIONS: Distal wrist kinematics were highly correlated to clinical outcomes, warranting future investigation to explore our nonlinear wrist model with acute or subacute stroke populations. TRIAL REGISTRATION: http://www.clinicaltrials.gov. Actual study start date September 2012. First registered on 15 November 2012. Retrospectively registered. Unique identifiers: NCT01726673 and NCT03562663. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s42234-021-00082-8. |
---|