Cargando…
ECG-AI: electrocardiographic artificial intelligence model for prediction of heart failure
AIMS: Heart failure (HF) is a leading cause of death. Early intervention is the key to reduce HF-related morbidity and mortality. This study assesses the utility of electrocardiograms (ECGs) in HF risk prediction. METHODS AND RESULTS: Data from the baseline visits (1987–89) of the Atherosclerosis Ri...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8715759/ https://www.ncbi.nlm.nih.gov/pubmed/34993487 http://dx.doi.org/10.1093/ehjdh/ztab080 |
_version_ | 1784624191943737344 |
---|---|
author | Akbilgic, Oguz Butler, Liam Karabayir, Ibrahim Chang, Patricia P Kitzman, Dalane W Alonso, Alvaro Chen, Lin Y Soliman, Elsayed Z |
author_facet | Akbilgic, Oguz Butler, Liam Karabayir, Ibrahim Chang, Patricia P Kitzman, Dalane W Alonso, Alvaro Chen, Lin Y Soliman, Elsayed Z |
author_sort | Akbilgic, Oguz |
collection | PubMed |
description | AIMS: Heart failure (HF) is a leading cause of death. Early intervention is the key to reduce HF-related morbidity and mortality. This study assesses the utility of electrocardiograms (ECGs) in HF risk prediction. METHODS AND RESULTS: Data from the baseline visits (1987–89) of the Atherosclerosis Risk in Communities (ARIC) study was used. Incident hospitalized HF events were ascertained by ICD codes. Participants with good quality baseline ECGs were included. Participants with prevalent HF were excluded. ECG-artificial intelligence (AI) model to predict HF was created as a deep residual convolutional neural network (CNN) utilizing standard 12-lead ECG. The area under the receiver operating characteristic curve (AUC) was used to evaluate prediction models including (CNN), light gradient boosting machines (LGBM), and Cox proportional hazards regression. A total of 14 613 (45% male, 73% of white, mean age ± standard deviation of 54 ± 5) participants were eligible. A total of 803 (5.5%) participants developed HF within 10 years from baseline. Convolutional neural network utilizing solely ECG achieved an AUC of 0.756 (0.717–0.795) on the hold-out test data. ARIC and Framingham Heart Study (FHS) HF risk calculators yielded AUC of 0.802 (0.750–0.850) and 0.780 (0.740–0.830). The highest AUC of 0.818 (0.778–0.859) was obtained when ECG-AI model output, age, gender, race, body mass index, smoking status, prevalent coronary heart disease, diabetes mellitus, systolic blood pressure, and heart rate were used as predictors of HF within LGBM. The ECG-AI model output was the most important predictor of HF. CONCLUSIONS: ECG-AI model based solely on information extracted from ECG independently predicts HF with accuracy comparable to existing FHS and ARIC risk calculators. |
format | Online Article Text |
id | pubmed-8715759 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-87157592022-01-04 ECG-AI: electrocardiographic artificial intelligence model for prediction of heart failure Akbilgic, Oguz Butler, Liam Karabayir, Ibrahim Chang, Patricia P Kitzman, Dalane W Alonso, Alvaro Chen, Lin Y Soliman, Elsayed Z Eur Heart J Digit Health Original Articles AIMS: Heart failure (HF) is a leading cause of death. Early intervention is the key to reduce HF-related morbidity and mortality. This study assesses the utility of electrocardiograms (ECGs) in HF risk prediction. METHODS AND RESULTS: Data from the baseline visits (1987–89) of the Atherosclerosis Risk in Communities (ARIC) study was used. Incident hospitalized HF events were ascertained by ICD codes. Participants with good quality baseline ECGs were included. Participants with prevalent HF were excluded. ECG-artificial intelligence (AI) model to predict HF was created as a deep residual convolutional neural network (CNN) utilizing standard 12-lead ECG. The area under the receiver operating characteristic curve (AUC) was used to evaluate prediction models including (CNN), light gradient boosting machines (LGBM), and Cox proportional hazards regression. A total of 14 613 (45% male, 73% of white, mean age ± standard deviation of 54 ± 5) participants were eligible. A total of 803 (5.5%) participants developed HF within 10 years from baseline. Convolutional neural network utilizing solely ECG achieved an AUC of 0.756 (0.717–0.795) on the hold-out test data. ARIC and Framingham Heart Study (FHS) HF risk calculators yielded AUC of 0.802 (0.750–0.850) and 0.780 (0.740–0.830). The highest AUC of 0.818 (0.778–0.859) was obtained when ECG-AI model output, age, gender, race, body mass index, smoking status, prevalent coronary heart disease, diabetes mellitus, systolic blood pressure, and heart rate were used as predictors of HF within LGBM. The ECG-AI model output was the most important predictor of HF. CONCLUSIONS: ECG-AI model based solely on information extracted from ECG independently predicts HF with accuracy comparable to existing FHS and ARIC risk calculators. Oxford University Press 2021-10-09 /pmc/articles/PMC8715759/ /pubmed/34993487 http://dx.doi.org/10.1093/ehjdh/ztab080 Text en © The Author(s) 2021. Published by Oxford University Press on behalf of the European Society of Cardiology. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Original Articles Akbilgic, Oguz Butler, Liam Karabayir, Ibrahim Chang, Patricia P Kitzman, Dalane W Alonso, Alvaro Chen, Lin Y Soliman, Elsayed Z ECG-AI: electrocardiographic artificial intelligence model for prediction of heart failure |
title | ECG-AI: electrocardiographic artificial intelligence model for prediction of heart failure |
title_full | ECG-AI: electrocardiographic artificial intelligence model for prediction of heart failure |
title_fullStr | ECG-AI: electrocardiographic artificial intelligence model for prediction of heart failure |
title_full_unstemmed | ECG-AI: electrocardiographic artificial intelligence model for prediction of heart failure |
title_short | ECG-AI: electrocardiographic artificial intelligence model for prediction of heart failure |
title_sort | ecg-ai: electrocardiographic artificial intelligence model for prediction of heart failure |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8715759/ https://www.ncbi.nlm.nih.gov/pubmed/34993487 http://dx.doi.org/10.1093/ehjdh/ztab080 |
work_keys_str_mv | AT akbilgicoguz ecgaielectrocardiographicartificialintelligencemodelforpredictionofheartfailure AT butlerliam ecgaielectrocardiographicartificialintelligencemodelforpredictionofheartfailure AT karabayiribrahim ecgaielectrocardiographicartificialintelligencemodelforpredictionofheartfailure AT changpatriciap ecgaielectrocardiographicartificialintelligencemodelforpredictionofheartfailure AT kitzmandalanew ecgaielectrocardiographicartificialintelligencemodelforpredictionofheartfailure AT alonsoalvaro ecgaielectrocardiographicartificialintelligencemodelforpredictionofheartfailure AT chenliny ecgaielectrocardiographicartificialintelligencemodelforpredictionofheartfailure AT solimanelsayedz ecgaielectrocardiographicartificialintelligencemodelforpredictionofheartfailure |