Cargando…
ECG-AI: electrocardiographic artificial intelligence model for prediction of heart failure
AIMS: Heart failure (HF) is a leading cause of death. Early intervention is the key to reduce HF-related morbidity and mortality. This study assesses the utility of electrocardiograms (ECGs) in HF risk prediction. METHODS AND RESULTS: Data from the baseline visits (1987–89) of the Atherosclerosis Ri...
Autores principales: | Akbilgic, Oguz, Butler, Liam, Karabayir, Ibrahim, Chang, Patricia P, Kitzman, Dalane W, Alonso, Alvaro, Chen, Lin Y, Soliman, Elsayed Z |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8715759/ https://www.ncbi.nlm.nih.gov/pubmed/34993487 http://dx.doi.org/10.1093/ehjdh/ztab080 |
Ejemplares similares
-
Image and structured data analysis for prognostication of health outcomes in patients presenting to the ED during the COVID-19 pandemic
por: Butler, Liam, et al.
Publicado: (2022) -
Electrocardiographic Predictors of Heart Failure With Reduced Versus Preserved Ejection Fraction: The Multi‐Ethnic Study of Atherosclerosis
por: O'Neal, Wesley T., et al.
Publicado: (2017) -
Gradient boosting for Parkinson’s disease diagnosis from voice recordings
por: Karabayir, Ibrahim, et al.
Publicado: (2020) -
Preventing Heart Failure With Habitual Physical Activity: Dependence on Heart Failure Phenotype and Concomitant Cardiovascular Disease
por: Pandey, Ambarish, et al.
Publicado: (2020) -
Feasibility of artificial intelligence-enhanced electrocardiogram (AI-ECG) analysis in the current clinical environment: An online survey
por: Bodagh, N, et al.
Publicado: (2023)