Cargando…

A Meta-Analysis of Non-Osteoarthritis and Osteoarthritis Chondrocyte Gene Expression to Determine the Efficacy of Autologous Chondrocyte Transplantation as a Viable Treatment Option

BACKGROUND: Osteoarthritis (OA) is a clinical syndrome characterized by joint failure that is accompanied by pain and functional limitations. OA is the leading cause of chronic disability in elderly and it is estimated that the United States spends $185 billion in management of OA annually. Although...

Descripción completa

Detalles Bibliográficos
Autores principales: Tran, Tien M., Sosa, Bryan, O’Connell, Alexis, Chu, Tinchun, Cottrell, Jessica A., Chang, Sulie L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8715826/
https://www.ncbi.nlm.nih.gov/pubmed/34970658
Descripción
Sumario:BACKGROUND: Osteoarthritis (OA) is a clinical syndrome characterized by joint failure that is accompanied by pain and functional limitations. OA is the leading cause of chronic disability in elderly and it is estimated that the United States spends $185 billion in management of OA annually. Although OA patients receive both pharmacologic and non-pharmacologic treatments, none of them provide long-lasting treatments. Since 1980s, autologous chondrocyte transplantation (ACT) has been used to regenerate cartilage within focal cartilage defects of young patients without pre-existing OA with increased functionality by 74% to 90%. In this technique, chondrocytes are removed from patients, multiplied in vitro, then implanted into the focal cartilage defect. Our review aimed to compare chondrocyte gene expression profiles of non-OA patients with OA patients to determine if OA-derived chondrocytes could be used for the ACT. METHODS: An extensive literature search was conducted with following criteria:(1) comparing chondrocyte gene expression profiles of OA joint and non-OA joint, or (2)relating to ACT. Ingenuity Pathway Analysis (IPA) was then utilized to analyze the differential chondrocyte gene expression profiles of OA to non-OA patients to identify key associated biological pathways. RESULTS: Differential gene expression profiles were similar between non-OA and OA chondrocytes: including ACAN, COL2A1, COL1A1, SOX 6 (p<0.001-0.05); FN1, COL11A1, MMP7, DLX5, SOX9, MMP2, TGFB1, THBS3, COMP, CILP2, ASPN, IGF2, DPT (p<0.001-0.05), and ADAMTS5, LAMA4 (p<0.01-0.05). CONCLUSION: These genes are important to cartilage function. Therefore, our results suggest that OA-derived chondrocytes may be useful to heal focal cartilage defects using ACT.