Cargando…
Predictors of colorectal cancer survival using cox regression and random survival forests models based on gene expression data
Understanding and identifying the markers and clinical information that are associated with colorectal cancer (CRC) patient survival is needed for early detection and diagnosis. In this work, we aimed to build a simple model using Cox proportional hazards (PH) and random survival forest (RSF) and fi...
Autores principales: | Mohammed, Mohanad, Mboya, Innocent B., Mwambi, Henry, Elbashir, Murtada K., Omolo, Bernard |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8716055/ https://www.ncbi.nlm.nih.gov/pubmed/34965262 http://dx.doi.org/10.1371/journal.pone.0261625 |
Ejemplares similares
-
A stacking ensemble deep learning approach to cancer type classification based on TCGA data
por: Mohammed, Mohanad, et al.
Publicado: (2021) -
Predictors of singleton preterm birth using multinomial regression models accounting for missing data: A birth registry-based cohort study in northern Tanzania
por: Mboya, Innocent B., et al.
Publicado: (2021) -
A comparison of random survival forest and Cox regression for prediction of mortality in patients with hemorrhagic stroke
por: Wang, Yuxin, et al.
Publicado: (2023) -
Prediction of perinatal death using machine learning models: a birth registry-based cohort study in northern Tanzania
por: Mboya, Innocent B, et al.
Publicado: (2020) -
A comparison of the conditional inference survival forest model to random survival forests based on a simulation study as well as on two applications with time-to-event data
por: Nasejje, Justine B., et al.
Publicado: (2017)