Cargando…
An Efficient Algorithm for the Detection of Outliers in Mislabeled Omics Data
High dimensionality and noise have made it difficult to detect related biomarkers in omics data. Through previous study, penalized maximum trimmed likelihood estimation is effective in identifying mislabeled samples in high-dimensional data with mislabeled error. However, the algorithm commonly used...
Autores principales: | Sun, Hongwei, Wang, Jiu, Zhang, Zhongwen, Hu, Naibao, Wang, Tong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8716222/ https://www.ncbi.nlm.nih.gov/pubmed/34976114 http://dx.doi.org/10.1155/2021/9436582 |
Ejemplares similares
-
Comparison of methods for the detection of outliers and associated biomarkers in mislabeled omics data
por: Sun, Hongwei, et al.
Publicado: (2020) -
reGenotyper: Detecting mislabeled samples in genetic data
por: Zych, Konrad, et al.
Publicado: (2017) -
Right data for right patient—a precisionFDA NCI–CPTAC Multi-omics Mislabeling Challenge
por: Boja, Emily, et al.
Publicado: (2018) -
ROSIE: RObust Sparse ensemble for outlIEr detection and gene
selection in cancer omics data
por: Jensch, Antje, et al.
Publicado: (2022) -
Public awareness of seafood mislabeling
por: Ryburn, Savannah J., et al.
Publicado: (2022)