Cargando…

A novel mechanism to generate metallic single crystals

Generally, the evolution of metallic single crystals is based on crystal growth. The single crystal is either produced by growing a seed single crystal or by sophisticated grain selection processes followed by crystal growth. Here, we describe for the first time a fully new mechanism to generate sin...

Descripción completa

Detalles Bibliográficos
Autores principales: Pistor, J., Körner, C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8716531/
https://www.ncbi.nlm.nih.gov/pubmed/34966185
http://dx.doi.org/10.1038/s41598-021-04235-2
Descripción
Sumario:Generally, the evolution of metallic single crystals is based on crystal growth. The single crystal is either produced by growing a seed single crystal or by sophisticated grain selection processes followed by crystal growth. Here, we describe for the first time a fully new mechanism to generate single crystals based on thermo-mechanically induced texture formation during additive manufacturing. The single crystal develops due to two different mechanisms. The first step is a standard grain selection process due to directional solidification, leading to a pronounced fiber texture. The second and new mechanism bases on successive thermo-mechanically induced plastic deformations and texture formation in FCC crystals under compression. During this second step, the columnar grain structure transforms into a single crystal by rotation of individual grains. Thus, the single crystal forms step by step by merging the originally columnar grain structure. This novel, stress induced mechanism opens up completely new perspectives to fabricate single crystalline components and to accurately adjust the orientation according to the load.