Cargando…
Predicting preeclampsia and related risk factors using data mining approaches: A cross-sectional study
BACKGROUND: Preeclampsia is a type of pregnancy hypertension disorder that has adverse effects on both the mother and the fetus. Despite recent advances in the etiology of preeclampsia, no adequate clinical screening tests have been identified to diagnose the disorder. OBJECTIVE: We aimed to provide...
Autores principales: | Manoochehri, Zohreh, Manoochehri, Sara, Soltani, Farzaneh, Tapak, Leili, Sadeghifar, Majid |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Knowledge E
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8717074/ https://www.ncbi.nlm.nih.gov/pubmed/34977453 http://dx.doi.org/10.18502/ijrm.v19i11.9911 |
Ejemplares similares
-
Random forest model to identify factors associated with anabolic-androgenic steroid use
por: Manoochehri, Zohreh, et al.
Publicado: (2021) -
Predicting the Survival Time for Bladder Cancer Using an Additive Hazards Model in Microarray Data
por: TAPAK, Leili, et al.
Publicado: (2016) -
Multistate recursively imputed survival trees for time-to-event data analysis: an application to AIDS and mortality post-HIV infection data
por: Tapak, Leili, et al.
Publicado: (2018) -
Predictors of Preeclampsia Based on a 10-Year Case-Control Study
por: Shayan, Arezoo, et al.
Publicado: (2019) -
Regularized Weighted Nonparametric Likelihood Approach for High-Dimension Sparse Subdistribution Hazards Model for Competing Risk Data
por: Tapak, Leili, et al.
Publicado: (2021)