Cargando…

Bioremediation potential of hydrocarbon degrading bacteria: isolation, characterization, and assessment

Oil contamination is a worldwide concern now. However, oil contaminated environment is enriched with microorganisms that can utilize petroleum oil and use hydrocarbon for their growth, nutrition and metabolic activities. In the present study, bacteria present in the oil contaminated soil were isolat...

Descripción completa

Detalles Bibliográficos
Autores principales: Hossain, Md. Forhad, Akter, Mst. Ambia, Sohan, Md. Sohanur Rahman, Sultana, Dr. Nigar, Reza, Md Abu, Hoque, Kazi Md. Faisal
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8717088/
https://www.ncbi.nlm.nih.gov/pubmed/35002411
http://dx.doi.org/10.1016/j.sjbs.2021.08.069
Descripción
Sumario:Oil contamination is a worldwide concern now. However, oil contaminated environment is enriched with microorganisms that can utilize petroleum oil and use hydrocarbon for their growth, nutrition and metabolic activities. In the present study, bacteria present in the oil contaminated soil were isolated by enrichment culture technique using Minimal Salt (MS) media supplemented with diesel oil and burned engine oil as a sole carbon source. The isolated bacteria were characterized by morphological and biochemical tests and identified by molecular tool through cycle sequencing method. Three isolates were morphologically characterized as gram-negative, cocci shaped and 16S rRNA sequence analysis revealed that the isolates are closely related to Pseudomonas sp., Acinetobacter sp., and Enterobacter sp. respectively. Growth condition was optimized at pH 7.0 and temperature 37 °C. All the isolates were susceptible to several antibiotics and they have no antagonistic effect with soil beneficial bacteria. Three isolates were grown in two different concentrations of diesel oil and burned engine oil (4% v/v and 8%, v/v) respectively. Study revealed that with increasing the concentration of diesel oil in the media the growth rate of all the isolates were decreased. In contrast, the growth rates of all the three isolates were increased, with increasing concentration of burned engine oil. In our study, all the isolates showed their degradation efficacy in 4% v/v diesel oil and in 8% v/v burned engine oil. So, our research clearly shows that the isolates could be potentially used for bioremediation purposes for cleaning up petroleum polluted area.