Cargando…
COVIDXception-Net: A Bayesian Optimization-Based Deep Learning Approach to Diagnose COVID-19 from X-Ray Images
COVID-19 is spreading around the world like wildfire. Chest X-rays are used as one of the primary tools for diagnosing COVID-19. However, about two-thirds of the world population do not have access to sufficient radiological services. In this work, we propose a deep learning-driven automated system,...
Autores principales: | Arman, Shifat E., Rahman, Sejuti, Deowan, Shamim Ahmed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Singapore
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8717305/ https://www.ncbi.nlm.nih.gov/pubmed/34981040 http://dx.doi.org/10.1007/s42979-021-00980-3 |
Ejemplares similares
-
HOG + CNN Net: Diagnosing COVID-19 and Pneumonia by Deep Neural Network from Chest X-Ray Images
por: Rahman, Mohammad Marufur, et al.
Publicado: (2021) -
Automated COVID-19 Detection from Chest X-Ray Images: A High-Resolution Network (HRNet) Approach
por: Ahmed, Sifat, et al.
Publicado: (2021) -
Bayesian-based optimized deep learning model to detect COVID-19 patients using chest X-ray image data
por: Loey, Mohamed, et al.
Publicado: (2022) -
Deep efficient-nets with transfer learning assisted detection of COVID-19 using chest X-ray radiology imaging
por: Mzoughi, Hiba, et al.
Publicado: (2023) -
BoostNet: a method to enhance the performance of deep learning model on musculoskeletal radiographs X-ray images
por: Mall, Pawan Kumar, et al.
Publicado: (2022)