Cargando…

Metabolic phenotype mediates the outcome of competitive interactions in a response‐surface field experiment

Competition and metabolism should be linked. Intraspecific variation in metabolic rates and, hence, resource demands covary with competitive ability. The effects of metabolism on conspecific interactions, however, have mostly been studied under laboratory conditions. We used a trait‐specific respons...

Descripción completa

Detalles Bibliográficos
Autores principales: Schuster, Lukas, White, Craig R., Marshall, Dustin J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8717352/
https://www.ncbi.nlm.nih.gov/pubmed/35003649
http://dx.doi.org/10.1002/ece3.8388
Descripción
Sumario:Competition and metabolism should be linked. Intraspecific variation in metabolic rates and, hence, resource demands covary with competitive ability. The effects of metabolism on conspecific interactions, however, have mostly been studied under laboratory conditions. We used a trait‐specific response‐surface design to test for the effects of metabolism on pairwise interactions of the marine colonial invertebrate, Bugula neritina in the field. Specifically, we compared the performance (survival, growth, and reproduction) of focal individuals, both in the presence and absence of a neighbor colony, both of which had their metabolic phenotype characterized. Survival of focal colonies depended on the metabolic phenotype of the neighboring individual, and on the combination of both the focal and neighbor colony metabolic phenotypes that were present. Surprisingly, we found pervasive effects of neighbor metabolic phenotypes on focal colony growth and reproduction, although the sign and strength of these effects showed strong microenvironmental variability. Overall, we find that the metabolic phenotype changes the strength of competitive interactions, but these effects are highly contingent on local conditions. We suggest future studies explore how variation in metabolic rate affects organisms beyond the focal organism alone, particularly under field conditions.