Cargando…
Mechanical and Water Absorption Properties of Short Banana Fiber/Unsaturated Polyester/Molecular Sieves + ZnO Nanorod Hybrid Nanobiocomposites
[Image: see text] ZnO nanorods were prepared by the sol–gel method and characterized using UV–visible absorption spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, powder X-ray diffraction (PXRD), thermogravimetric analysis/differential thermogravimetry (TGA/DTG), high-resolution transmi...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8717401/ https://www.ncbi.nlm.nih.gov/pubmed/34984258 http://dx.doi.org/10.1021/acsomega.1c02662 |
_version_ | 1784624524664242176 |
---|---|
author | Arumugam, Chinnappa Arumugam, Gandarvakottai Senthilkumar Ganesan, Ashok Muthusamy, Sarojadevi |
author_facet | Arumugam, Chinnappa Arumugam, Gandarvakottai Senthilkumar Ganesan, Ashok Muthusamy, Sarojadevi |
author_sort | Arumugam, Chinnappa |
collection | PubMed |
description | [Image: see text] ZnO nanorods were prepared by the sol–gel method and characterized using UV–visible absorption spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, powder X-ray diffraction (PXRD), thermogravimetric analysis/differential thermogravimetry (TGA/DTG), high-resolution transmission electron microscopy (HR-TEM), field emission scanning electron microscopy (FE-SEM), and energy-dispersive X-ray spectroscopy (EDAX). Banana fiber/polyester resin (BF/PE) biocomposites and BF/PE/MS/nano ZnO nanobiocomposites were made using the untreated and chemically treated (with NaOH, formic acid, acetic anhydride, hydrogen peroxide, and potassium permanganate) banana fiber (BF), unsaturated polyester resin (PE), molecular sieves (MS), and the prepared ZnO nanorods. The KMnO(4), Ac(2)O, and NaOH treatments enhanced the thermal stability of the nanobiocomposites. Addition of 2% of ZnO nanorods increased the tensile strength of all of the chemically treated BF/PE/MS biocomposites. The chemical treatments alone decreased (NaOH—15.4 MPa; KMnO(4)—14.5 MPa; H(2)O(2)—9.9 MPa; Ac(2)O—7.9 MPa; HCOOH—6.9 MPa) the compressive strength of the untreated BF/PE/MS biocomposite (25.9 MPa). But the chemical treatment and addition of ZnO nanorods enhanced the compressive strength effectively (48.5, 41.6, 39.4, 37.0, and 34.6 MPa for NaOH, HCOOH, KMnO(4), H(2)O(2), and Ac(2)O treatments, respectively) compared to the untreated BF/PE/MS biocomposites (24.0 MPa). The H(2)O(2) (69.0 MPa) and NaOH (62.9 MPa) treatments enhanced the flexural strength of the untreated BF/PE biocomposites (51.6 MPa). The addition of ZnO nanorods enhanced the flexural strength of all of the chemically treated (except NaOH) BF/PE/MS biocomposites (55.7, 59.4, 79.0, and 67.4 MPa for HCOOH, Ac(2)O, H(2)O(2), and KMnO(4) treatments, respectively). The impact strengths of the biocomposites were enhanced by both chemical treatments and addition of ZnO nanorods. The addition of ZnO nanorods decreased the water absorption of the biocomposites significantly from 24.3% for the untreated to a minimum of 14.5% for the H(2)O(2)-treated BF/PE/MS/ZnO nanobiocomposite. |
format | Online Article Text |
id | pubmed-8717401 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-87174012022-01-03 Mechanical and Water Absorption Properties of Short Banana Fiber/Unsaturated Polyester/Molecular Sieves + ZnO Nanorod Hybrid Nanobiocomposites Arumugam, Chinnappa Arumugam, Gandarvakottai Senthilkumar Ganesan, Ashok Muthusamy, Sarojadevi ACS Omega [Image: see text] ZnO nanorods were prepared by the sol–gel method and characterized using UV–visible absorption spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, powder X-ray diffraction (PXRD), thermogravimetric analysis/differential thermogravimetry (TGA/DTG), high-resolution transmission electron microscopy (HR-TEM), field emission scanning electron microscopy (FE-SEM), and energy-dispersive X-ray spectroscopy (EDAX). Banana fiber/polyester resin (BF/PE) biocomposites and BF/PE/MS/nano ZnO nanobiocomposites were made using the untreated and chemically treated (with NaOH, formic acid, acetic anhydride, hydrogen peroxide, and potassium permanganate) banana fiber (BF), unsaturated polyester resin (PE), molecular sieves (MS), and the prepared ZnO nanorods. The KMnO(4), Ac(2)O, and NaOH treatments enhanced the thermal stability of the nanobiocomposites. Addition of 2% of ZnO nanorods increased the tensile strength of all of the chemically treated BF/PE/MS biocomposites. The chemical treatments alone decreased (NaOH—15.4 MPa; KMnO(4)—14.5 MPa; H(2)O(2)—9.9 MPa; Ac(2)O—7.9 MPa; HCOOH—6.9 MPa) the compressive strength of the untreated BF/PE/MS biocomposite (25.9 MPa). But the chemical treatment and addition of ZnO nanorods enhanced the compressive strength effectively (48.5, 41.6, 39.4, 37.0, and 34.6 MPa for NaOH, HCOOH, KMnO(4), H(2)O(2), and Ac(2)O treatments, respectively) compared to the untreated BF/PE/MS biocomposites (24.0 MPa). The H(2)O(2) (69.0 MPa) and NaOH (62.9 MPa) treatments enhanced the flexural strength of the untreated BF/PE biocomposites (51.6 MPa). The addition of ZnO nanorods enhanced the flexural strength of all of the chemically treated (except NaOH) BF/PE/MS biocomposites (55.7, 59.4, 79.0, and 67.4 MPa for HCOOH, Ac(2)O, H(2)O(2), and KMnO(4) treatments, respectively). The impact strengths of the biocomposites were enhanced by both chemical treatments and addition of ZnO nanorods. The addition of ZnO nanorods decreased the water absorption of the biocomposites significantly from 24.3% for the untreated to a minimum of 14.5% for the H(2)O(2)-treated BF/PE/MS/ZnO nanobiocomposite. American Chemical Society 2021-12-14 /pmc/articles/PMC8717401/ /pubmed/34984258 http://dx.doi.org/10.1021/acsomega.1c02662 Text en © 2021 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Arumugam, Chinnappa Arumugam, Gandarvakottai Senthilkumar Ganesan, Ashok Muthusamy, Sarojadevi Mechanical and Water Absorption Properties of Short Banana Fiber/Unsaturated Polyester/Molecular Sieves + ZnO Nanorod Hybrid Nanobiocomposites |
title | Mechanical and Water Absorption Properties of Short
Banana Fiber/Unsaturated Polyester/Molecular Sieves + ZnO Nanorod
Hybrid Nanobiocomposites |
title_full | Mechanical and Water Absorption Properties of Short
Banana Fiber/Unsaturated Polyester/Molecular Sieves + ZnO Nanorod
Hybrid Nanobiocomposites |
title_fullStr | Mechanical and Water Absorption Properties of Short
Banana Fiber/Unsaturated Polyester/Molecular Sieves + ZnO Nanorod
Hybrid Nanobiocomposites |
title_full_unstemmed | Mechanical and Water Absorption Properties of Short
Banana Fiber/Unsaturated Polyester/Molecular Sieves + ZnO Nanorod
Hybrid Nanobiocomposites |
title_short | Mechanical and Water Absorption Properties of Short
Banana Fiber/Unsaturated Polyester/Molecular Sieves + ZnO Nanorod
Hybrid Nanobiocomposites |
title_sort | mechanical and water absorption properties of short
banana fiber/unsaturated polyester/molecular sieves + zno nanorod
hybrid nanobiocomposites |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8717401/ https://www.ncbi.nlm.nih.gov/pubmed/34984258 http://dx.doi.org/10.1021/acsomega.1c02662 |
work_keys_str_mv | AT arumugamchinnappa mechanicalandwaterabsorptionpropertiesofshortbananafiberunsaturatedpolyestermolecularsievesznonanorodhybridnanobiocomposites AT arumugamgandarvakottaisenthilkumar mechanicalandwaterabsorptionpropertiesofshortbananafiberunsaturatedpolyestermolecularsievesznonanorodhybridnanobiocomposites AT ganesanashok mechanicalandwaterabsorptionpropertiesofshortbananafiberunsaturatedpolyestermolecularsievesznonanorodhybridnanobiocomposites AT muthusamysarojadevi mechanicalandwaterabsorptionpropertiesofshortbananafiberunsaturatedpolyestermolecularsievesznonanorodhybridnanobiocomposites |