Cargando…
Usefulness of Machine Learning for Identification of Referable Diabetic Retinopathy in a Large-Scale Population-Based Study
Purpose: To development and validation of machine learning-based classifiers based on simple non-ocular metrics for detecting referable diabetic retinopathy (RDR) in a large-scale Chinese population–based survey. Methods: The 1,418 patients with diabetes mellitus from 8,952 rural residents screened...
Autores principales: | Yang, Cheng, Liu, Qingyang, Guo, Haike, Zhang, Min, Zhang, Lixin, Zhang, Guanrong, Zeng, Jin, Huang, Zhongning, Meng, Qianli, Cui, Ying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8717406/ https://www.ncbi.nlm.nih.gov/pubmed/34977075 http://dx.doi.org/10.3389/fmed.2021.773881 |
Ejemplares similares
-
Prevalence and risk factors for diabetic retinopathy in a cross-sectional population-based study from rural southern China: Dongguan Eye Study
por: Cui, Ying, et al.
Publicado: (2019) -
Long-Term Retinal Neurovascular and Choroidal Changes After Panretinal Photocoagulation in Diabetic Retinopathy
por: Huang, Tian, et al.
Publicado: (2021) -
Prevalence and causes of low vision and blindness in a Chinese population with type 2 diabetes: the Dongguan Eye Study
por: Cui, Ying, et al.
Publicado: (2017) -
High HDL-C and high LDL-C are risk factors of pterygium in a population-based cross-sectional study in Southern China: the Dongguan Eye Study
por: Zang, Siwen, et al.
Publicado: (2022) -
Differential distribution of manifest lesions in diabetic retinopathy by fundus fluorescein angiography and fundus photography
por: Li, Xiaoli, et al.
Publicado: (2020)