Cargando…
Machine learning approach to predict acute kidney injury after liver surgery
BACKGROUND: Acute kidney injury (AKI) after surgery appears to increase the risk of death in patients with liver cancer. In recent years, machine learning algorithms have been shown to offer higher discriminative efficiency than classical statistical analysis. AIM: To develop prediction models for A...
Autores principales: | Dong, Jun-Feng, Xue, Qiang, Chen, Ting, Zhao, Yuan-Yu, Fu, Hong, Guo, Wen-Yuan, Ji, Jun-Song |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Baishideng Publishing Group Inc
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8717516/ https://www.ncbi.nlm.nih.gov/pubmed/35071556 http://dx.doi.org/10.12998/wjcc.v9.i36.11255 |
Ejemplares similares
-
Prediction model of stress ulcer after laparoscopic surgery for colorectal cancer established by machine learning algorithm
por: Yu, Dong-Mei, et al.
Publicado: (2023) -
Comparison and development of machine learning for thalidomide-induced peripheral neuropathy prediction of refractory Crohn’s disease in Chinese population
por: Mao, Jing, et al.
Publicado: (2023) -
Flap failure prediction in microvascular tissue reconstruction using machine learning algorithms
por: Shi, Yu-Cang, et al.
Publicado: (2022) -
Acute kidney injury in traumatic brain injury intensive care unit patients
por: Huang, Zheng-Yang, et al.
Publicado: (2022) -
Acute kidney injury following spinal instrumentation surgery in children
por: Jöbsis, Jasper J, et al.
Publicado: (2017)